Scientia Geographica Sinica  2016 , 36 (7): 1106-1114 https://doi.org/10.13249/j.cnki.sgs.2016.07.018

Orginal Article

长白山玄武岩台地土壤动物多样性及其生态地理分布

殷秀琴12, 薛文丽1, 马辰1

1. 东北师范大学地理科学学院, 吉林 长春 130024
2. 吉林省动物资源保护与利用重点实验室, 吉林 长春 130024

Diversity and Ecological Geographic Distribution of Soil Fauna in Basalt platform of the Changbai Mountains, China

Yin Xiuqin12, Xue Wenli1, Ma Chen1

1.School of Geographical Science, Northeast Normal University, Changchun 130024, Jilin, China
2. Jilin Key Laboratory of Animal Resource Conservation and Utilization, Changchun 130024, Jilin, China

中图分类号:  S154.5

文献标识码:  A

文章编号:  1000-0690(2016)07-1106-09

收稿日期: 2015-08-25

修回日期:  2015-11-3

网络出版日期:  2016-07-20

版权声明:  2016 《地理科学》编辑部 本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.

基金资助:  国家自然科学基金项目(41471211)资助

作者简介:

作者简介:殷秀琴(1951-),女,吉林长春人,教授,博士生导师,主要从事生物地理学和土壤动物生态学研究。E-mail: yinxq773@nenu.edu.cn

展开

摘要

于2014年春、夏和秋季对长白山玄武岩台地原始针阔混交林、次生针阔混交林、次生落叶阔叶林及耕地土壤动物进行研究。结果表明:大型土壤动物的多样性,春季次生针阔混交林为最高,夏季和秋季原始针阔混交林为最高,耕地在3个季节均为最低;中小型土壤动物的多样性,春、秋两季原始针阔混交林为最高,夏季次生针阔混交林为最高,耕地在3个季节仍为最低。根据一维方差分析可知春、夏、秋3个季节原始针阔混交林、次生针阔混交林和次生落叶阔叶林土壤动物类群和平均密度均显著高于耕地(p<0.05);而各生境土壤动物的类群和平均密度季节变化差异不显著(p>0.05)。各生境土壤动物的多样性呈现出随土层深度的增加而降低的趋势。土壤温度、速效P、有机质和土壤湿度的变化是影响长白山玄武岩台地土壤动物多样性地理分布的主要因子。

关键词: 土壤动物 ; 多样性 ; 生态地理分布 ; 玄武岩台地 ; 长白山

Abstract

Soil fauna play an important role in terrestrial ecosystems. They are closely connected with the above and under ground ecosystems. The effect of basalt platform on the diversity and ecological geographic distribution of the below ground soil fauna is unknown. In the present study, an investigation of diversity and ecological geographic distribution of the below ground soil fauna was conducted in the basalt platform of the Changbai Mountains with four habitats types (original conifer and broad-leaved mixed forest, secondary conifer and broad-leaved mixed forest, secondary deciduous broadleaved forest and arable land). The plots (5 m×5 m) were established using permanent signs in each of the arable land. The plots (20 m×20 m) were established using permanent signs in each of the other three habitats types. Within each plot, five subplots were selected randomly, and 25 cm×25 cm and 10 cm×10 cm areas were collected from the litter layer, 0-10 cm, 10-20 cm and 20-30 cm soil layers in each subplot during spring, summer, and autumn 2014. Soil macrofauna and soil meso-microfauna were extracted from each of the soil samples using hand collection methods and Tullgren funnel extractor, respectively. The effects of habitat types, seasonal variations and soil layers on the abundance, richness of soil fauna were analyzed using one-way ANOVA and multivariate analysis. Indexes of diversity were calculated to describe the characteristics of the diversity of soil fauna. The influence of soil environmental factors on soil faunal diversity was examined using redundancy analysis (RDA). The results showed that the dominant groups were Isotomidae, Oribatida and Hypogastruridae. The common groups included Gamasida, Actinedida, Pseudachorutidae, Diptera larva, Sminthuridae and Tomoceridae. In spring, the secondary conifer and broad-leaved mixed forest had the highest diversity of soil macrofauna among the four habitats. For soil macrofauna, in summer and autumn, original conifer and broad-leaved mixed forest had the highest diversity among the four habitats. However, in spring, summer, and autumn, the arable land had the lowest diversity among the four habitats. For soil meso-microfauna, in spring and autumn, original conifer and broad-leaved mixed forest had the highest diversity among the four habitats. In summer, secondary conifer and broad-leaved mixed forest had the highest diversity among the four habitats. However, in spring, summer, and autumn, the arable land had the lowest diversity of soil meso-microfauna among the four habitats. The one-way ANOVA showed that a significantly lower abundance and richness of soil fauna was evident in the arable land when compared to all other habitats in spring, summer, autumn (P < 0.05). However, abundance and richness of soil fauna did not respond significantly to variations in seasons (P > 0.05). From the vertical distribution, the diversity of soil fauna in each habitat was shown that it was decreased with the increasing soil depth. Redundancy analysis (RDA) showed that diversity and ecological geographic distribution of the below ground soil fauna was correlated significantly with soil temperature, available P, organic matter, soil moisture.

Keywords: soil fauna ; diversity ; ecological geographic distribution ; Basalt platform ; Changbai Mountains

0

PDF (609KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

殷秀琴, 薛文丽, 马辰. 长白山玄武岩台地土壤动物多样性及其生态地理分布[J]. , 2016, 36(7): 1106-1114 https://doi.org/10.13249/j.cnki.sgs.2016.07.018

Yin Xiuqin, Xue Wenli, Ma Chen. Diversity and Ecological Geographic Distribution of Soil Fauna in Basalt platform of the Changbai Mountains, China[J]. Scientia Geographica Sinica, 2016, 36(7): 1106-1114 https://doi.org/10.13249/j.cnki.sgs.2016.07.018

长白山是亚欧大陆北部最具代表性的典型自然综合体,自上而下主要由火山锥体、玄武岩高原和玄武岩台地构成。作为温带地带性植被类型之一的长白山针阔混交林就主要分布于海拔1 100 m以下的玄武岩台地上,是全球为数不多的大面积原生针阔混交林[1]。自19世纪末,长白山林区长期遭到采伐、火灾及拓荒等各种形式的干扰破坏,致使针阔混交林面积急剧减少[2],取而代之的是大面积的次生林和耕地,其群落的组成、结构和功能都发生了不同程度的变化。土壤动物作为森林生态系统的重要组成部分和物质循环、能量流动的积极参与者,其群落结构和多样性也会随生态环境的变化而改变[3~6]

近年来,学者们对长白山研究主要集中在地貌、土壤、植被[7~9]等方面,对土壤动物方面的研究相对较少,尤其是对广为分布的玄武岩台地土壤动物的研究鲜有报道。因此,本文选取长白山玄武岩台地典型生境作为研究对象,旨在探讨土壤动物多样性及其生态地理分布,为长白山森林生态系统的健康评价及管理、长白山地生态地理研究提供土壤动物学依据。

1 研究区概况

研究区位于长白山北坡玄武岩台地,该地区主要为更新世至上新世断裂隆起所喷溢出的玄武岩形成的高位玄武岩台地。气候属于受季风影响的温带大陆性山地气候,冬季寒冷而漫长,夏季短暂而温暖。多年平均温度为 3℃;年降水量约为700 ~ 800 mm,主要集中在6 ~ 9月[10]。地带性土壤为暗棕壤。本文选取玄武岩台地4个典型生境进行土壤动物研究,生境Ⅰ为原始针阔混交林(42°24′11′′N,128°5′48′′E;海拔800 m);生境Ⅱ为次生针阔混交林(42°24′17′′N,128°5′54′′E;海拔770 m);生境Ⅲ为次生落叶阔叶林(42°22′35′′N,128°5′45′′E;海拔790 m);生境Ⅳ为耕地(42°25′38′′N,128°5′43′′E;海拔740 m)。

2 研究方法

2.1 实验设计与取样方法

2014年5月(春)、7月(夏)、9月(秋)在选好的原始针阔混交林、次生针阔混交林、次生落叶阔叶林3个生境设置20 m×20 m样地,耕地设置为5 m×5 m样地。在各样地按对角线法选取5个样点作为重复样,分别按凋落物层、0~5、5~10、10~15 cm采集样品(耕地无凋落物层)。大型土壤动物取样面积为25 cm×25 cm,采用就地手捡,中小型土壤动物取样面积为10 cm×10 cm,样品带回实验室采用Tullgren法分离,所有土壤动物保存于75%酒精溶液中。3次共取450个土壤动物样品。土壤动物在OLYMPUS SZX16显微镜下分类鉴定,一般鉴定到科。在采集土壤动物样品的同时,使用EM50进行土壤温度及湿度的测定,并收集每层土壤样品带回实验室分析土壤理化性质。

2.2 数据处理方法

采用BioDiversity 软件包对土壤动物多样性指数(H')、丰富度指数(D)、均匀度指数(e)和优势度指数(C)进行计算;采用单因素方差分析和多因素方差分析对不同生境、季节和土层的土壤动物类群数和平均密度进行差异性分析,应用SPSS19分析软件完成;用RDA冗余分析来探讨土壤动物多样性与主要土壤环境因子之间的关系,RDA冗余分析应用Canoco 4.5软件包完成。

3 研究结果

3.1 土壤动物群落的组成和数量特征

4个生境共获土壤动物61类, 27 716只,隶属3门6纲19目(亚目)50科(表1),这些平均密度为43 404.80 只/m2。其中优势类群为等节跳虫科(35.70%)、甲螨亚目(22.28%)和球角跳虫科(10.73%),占总个体数的68.70%;常见的类群为革螨亚目(9.01%)、辐螨亚目(6.35%)、山跳虫科(5.76%)、双翅目幼虫(2.33%)、圆跳虫科(1.56%)和鳞跳虫科(1.16%),占总个体数的26.17%。其他52 类为稀有类群,仅占总个体数的5.13%。

表1   长白山玄武岩台地土壤动物区系组成

Table 1   The soil fanual composition in basalt platform of the Changbai Mountains

门 (Phylum)纲 (Class)目/亚目 (Order/Suborder)科(Family)
环节动物门 Annelida寡毛纲 Oligochaeta近孔寡毛目 Plesiopora线蚓科 Enchytraeidae
后孔寡毛目 Opisthopora正蚓科 Lumbricidae
软体动物门 Mollusca腹足纲 Gastropoda柄眼目 Stylemmatephora瓦娄蜗牛科 Valloniidae;槲果螺科 Cochlicopidae
节肢动物门 rthropda蛛形纲 Arachnida革螨亚目 Gamasida
甲螨亚目 Oribatida
辐螨亚目 Actinedida
唇足纲 Chilopoda蜘蛛目 Aranea漏斗蛛科 Agelenidae;幽灵蛛科 Pholcoidea;狼蛛科 Lycosidae;栅蛛科 Hahniidaee;类石蛛科 Segestriidae;近管蛛科 Anyphaonidae;跳蛛科 Salticidae;逍遥蛛科 Philodromidae;卷叶蛛科 Dictynidae;光盔蛛科 Liocranidae;卵形蛛科 Oonopidae;拟平腹蛛科 Zodaroidea;平腹蛛科 Gnaphosidae;管巢蛛科 Clubionidae;暗蛛科 Amaurobiidae;花皮蛛科 Scytodidae;狼栉蛛科 Zoridae;园蛛科 Araneidae;蟹蛛科 Thomisidae
拟蝎目 Pseudoscorpionida
盲蛛目 Opiliones长奇盲蛛科 Phalangiidae
石蜈蚣目 Lithobiomorph石蜈蚣科 Lithobiidae
地蜈蚣目 Geophilomorpha地蜈蚣科 Geophilidae
倍足纲Diplopoda马陆目 Juliformia
昆虫纲 Insect弹尾目 Collembola等节跳虫科 Isotomidae;球角跳虫科 Hypogastruridae;山跳虫科 Pseudachorutidae;长角跳虫科 Entomobryidae;鳞跳虫科 Tomoceridae;圆跳虫科 Sminthuridae;疣跳虫科 Neanuridae;
双尾目 Diplura原铗尾虫科 Projapygidae
鞘翅目 Coleoptera隐翅虫科 Staphylinidae;皮蠹科 Dermestidae;叩甲科 Elateridae;缨甲科 Ptiliidae;步甲科 Carabidae;鳃金龟科 Melolonthidae;郭公虫科 Cleridae;跳甲科 Propalticidae;叶甲科 Chrysomelidae;金龟子科Scarabaeidae;花萤科Cantharidae
鳞翅目Lepidoptera
同翅目 Homoptera叶蝉总科 Cicadellidae;蚜科 Aphidoidae
双翅目 Diptera果蝇科 Drosophilidae;毛蠓科 Psychodidae
膜翅目 Hymenoptera蚁科 Formicidae

新窗口打开

3.2 土壤动物多样性的水平分布及其动态特征

土壤动物类群最多的是原始针阔混交林(52类),最少的是耕地(31类);平均密度最大的是次生落叶阔叶林(55 981.60 /m2),最小的则是耕地(10 539.47只/m2)。根据单因素一维方差分析表明,4个生境土壤动物类群数和平均密度均存在显著性差异(F=14.219,F=28.621;p<0.01)。

1) 大型土壤动物。由图1可知,4个生境大型土壤动物类群数和平均密度的季节动态变化,春季类群数和平均密度的顺序均为:次生针阔混交林>原始针阔混交林>次生落叶阔叶林>耕地。夏季类群数的顺序为:原始针阔混交林>次生针阔混交林>次生落叶阔叶林>耕地;平均密度的顺序为:原始针阔混交林>次生落叶阔叶林>次生针阔混交林>耕地。秋季类群数和平均密度的顺序为:原始针阔混交林>次生落叶阔叶林>次生针阔混交林>耕地。

图1   不同生境大型土壤动物类群数和平均密度动态比较(平均值±标准误)
不同小写字母表示同一季节不同生境大型土壤动物类群数、平均密度具有显著差异;不同大写字母表示同一生境在不同季节大型土壤动物类群数、平均密度具有显著差异

Fig.1   The comparison of groups number and the average density dynamic of macrosoil fauna in different habitats(Mean±SE)

对同一季节不同生境大型土壤动物类群数和平均密度进行单因素一维方差分析结果显示,春、夏、秋3个季节均为原始针阔混交林、次生针阔混交林和次生落叶阔叶林显著高于耕地(p<0.05);对同一生境在不同季节类群数和平均密度进行单因素一维方差分析,结果显示仅次生针阔混交林春季的平均密度显著高于秋季及耕地,秋季类群数显著高于春季(p <0.05)外,其他生境类群数和平均密度季节性差异均不显著(p>0.05)。

综上,春季次生针阔混交林大型土壤动物的多样性最高,耕地最低;夏季和秋季则为原始针阔混交林大型土壤动物的多样性最高,耕地仍为最低。从各指数看(图2),虽然春季次生针阔混交林大型土壤动物的多样性最高,D指数为最高,而H ' 指数却较低,这是由于该生境的优势类群线蚓科所占比例高达52.46%,因此其C指数较高,e指数最低,H ' 指数表现也为较低。夏季和秋季原始针阔混交林多样性最高,其H' 指数和D指数也相应表现为最高,e指数和C指数呈负相关。耕地生境大型土壤动物的多样性在3个季节均为最低,其H ' 指数、D指数也相应表现为最低,C指数和e指数却为最高,这说明耕地大型土壤动物物种单一但分布均匀,受到人为干扰较大。

图2   不同生境大型土壤动物多样性特征指数动态比较(平均值±标准误差)

Fig.2   Comparison of diversity indexes of macrosoil fauna in different habitats(Mean±SE)

2) 中小型土壤动物。4个生境中小型土壤动物类群和平均密度季节动态变化(图3),春季类群数顺序为:原始针阔混交林>次生落叶阔叶林>次生针阔混交林>耕地;平均密度顺序为:次生针阔混交林>次生落叶阔叶林>原始针阔混交林>耕地。夏季类群数和平均密度顺序均为:次生针阔混交林> 原始针阔混交林>次生落叶阔叶林>耕地。秋季类群数顺序为:原始针阔混交林> 次生针阔混交林>次生落叶阔叶林>耕地;平均密度顺序为:次生落叶阔叶林> 原始针阔混交林>次生针阔混交林>耕地。

同一生境在不同季节大型土壤动物类群数、平均密度具有显著差异
不同小写字母表示同一季节不同生境大型土壤动物类群数、平均密度具有显著差异;不同大写字母表示

图3   不同生境中小型土壤动物类群数和平均密度动态比较(平均值±标准误)

Fig.3   The comparison of groups number and the average density dynamic of meso-microfauna in different habitats(Mean±SE)

对同一季节不同生境中小型土壤动物类群数和平均密度进行单因素一维方差分析显示:仅秋季次生针阔混交林中小型土壤动物平均密度与耕地不存在显著性差异外(p>0.05),其他季节类群数和平均密度均为原始针阔混交林、次生针阔混交林和次生落叶阔叶林显著高于耕地(p<0.05)。而同一生境中小型土壤动物在不同季节的平均密度和类群数则仅耕地春季平均密度显著高于夏季(p<0.05),其他的3个生境季节性差异均不显著(p>0.05)。

综上,春、秋两季原始针阔混交林中小型土壤动物的多样性最高,夏季则为次生针阔混交林多样性最高,耕地在3个季节均为最低。从各指数看(图4),虽然春、秋两季原始针阔混交林多样性最高,但各指数中的H ' 指数和D指数也相应表现为最高,春季e指数较高,C指数最低,这是由于该生境土壤动物优势类群较其他3个生境所占比例较小,分布较均匀。夏季次生针阔混交林多样性最高,然而各指数中的H ' 指数却表现为最低,原因是该生境优势类群中的等节跳虫科占总个体数的59.87%,也是4个生境所有优势类群中所占比例最高,所以H ' 指数最低,e指数也为最低。

图4   不同生境中小型土壤动物多样性特征指数动态比较(平均值±标准误)

Fig.4   Comparison of diversity index of meso-microfauna in different habitats(Mean±SE)

群落的物种多样性越高其营养通道越复杂,群落就越稳定,因此从水平分布来看,原始针阔混交林和次生针阔混交林环境最稳定,更适合土壤动物生存,次生落叶阔叶林的环境相对来说较稳定,而耕地的环境最不稳定,因此对土壤动物生存不利。

3.3 土壤动物多样性的垂直分布特征

长白山玄武岩台地土壤动物多样性呈现出随土层深度的增加而降低。这是由于土壤动物类群在土壤的表层表现最为丰富,具明显表聚性,随着土层深度的增加类群逐渐降低, LSD多重比较可知,4个生境土壤动物类群数在不同土层具有显著性差异(p<0.05)(表2)。

1) 大型土壤动物。大型土壤动物多样性的垂直分布在原始针阔混交林、次生针阔混交林和次生落叶阔叶林中均为凋落物层最高,10~15 cm土层最低,即凋落物层>0~5 cm>5~10 cm>10~15 cm土层;耕地由于无凋落物,因此其多样性的垂直分布则为0~5 cm土层最高,10~15 cm土层最低。对于凋落物层而言,各生境大型土壤动物多样性顺序为:原始针阔混交林>次生针阔混交林>次生落叶阔叶林;0~5 cm土层为:次生针阔混交林>原始针阔混交林、次生落叶阔叶林>耕地;5~10 cm土层为:次生针阔混交林、次生落叶阔叶林>原始针阔混交林>耕地;10~15 cm土层为:次生落叶阔叶林>原始针阔混交林>次生针阔混交林>耕地(图5a)。大型土壤动物的多样性除了受到土层的影响显著外,经多因素方差分析表明(表2),仅生境及土层×季节、土层×生境对大型土壤动物类群数具有显著性的影响(p<0.05)。

表2   土壤动物类群数的多因素方差分析

Table 2   Multiple factors analysis of variance of soil fauna communities

大型土壤动物类群数中小型土壤动物类群数
dfFpdfFp
土层359.296<0.001377.422<0.001
季节20.0810.922210.986<0.001
生境359.614<0.001334.119<0.001
土层 × 季节65.548<0.00163.1440.006
土层 × 生境99.155<0.001928.506<0.001
季节 × 生境60.8680.5262.2620.039
土层 × 季节 × 生境180.8350.66181.1350.321

注:df为自由度;FF检验;p为显著性

新窗口打开

2) 中小型土壤动物。中小型土壤动物多样性垂直分布也同样具明显表聚性。各生境中小型土壤动物多样性在凋落物层和0~5 cm土层的分布与大型土壤动物一致;5~10和10~15 cm土层中小型土壤动物多样性顺序均为:次生落叶阔叶林>原始针阔混交林>次生针阔混交林>耕地(图5b)。影响中小型土壤动物多样性的因素与大型土壤动物一致。

图5   不同生境土壤动物多样性的垂直分布特征(平均值±标准误)
a.大型土壤动物; b.中小型土壤动物

Fig.5   Vertical diversity characteristics of soil fauna in different habitats(Mean±SE)

3.4 土壤动物多样性与土壤环境因子分析

土壤动物与土壤之间有着密切的关系,因此土壤环境会在很大程度上影响土壤动物的多样性和分布特征 [11~14]。本文选用RDA排序分析土壤动物多样性与土壤环境因子之间的关系[15]。选取的土壤环境因子为土壤含水率、温度、pH、有机质、速效N、P、K。经蒙特卡罗检验后得到F=25.897,p=0.001和F= 36.676,p =0.001,说明RDA排序分析结果可信。排序轴1解释了81.8% 的物种-环境因子关系信息,前两个排序轴共解释了99% 的物种-环境因子关系信息。图6反映了土壤动物群落与主要土壤环境因子关系及不同因子对动物群落分布的影响。排序轴1主要反映了土壤温度和速效P对土壤动物群落分布的影响;排序轴2主要反映了土壤pH、有机质、温度、速效N和速效K对土壤动物群落分布的影响。其中鳞跳虫科、马陆目、等节跳虫科、革螨亚目、蚁科、长角跳虫科、地蜈蚣科和线蚓科与排序轴1呈显著负相关;圆跳虫科、隐翅虫科和蚜科与排序轴2呈显著负相关;叩甲科幼虫与排序轴1呈显著负相关,与排序轴2呈显著正相关;双翅目幼虫与排序轴1呈显著正相关,与排序轴2呈显著负相关。从图6还可看出,隐翅虫科受到土壤含水率、有机质和速效N的影响较大;蚜科、圆跳虫科和双翅目幼虫受到土壤速效K的影响较大。

图6   长白山主要土壤动物与主要土壤环境因子之间的冗余分析(RDA)
Isotomidae:等节跳虫科; Hypogastruridae:球角跳虫科;Sminthuridae:圆跳虫科; Entomobryida:长角跳虫科;Tomoceridae:鳞跳虫科;Pseudachorutidae:山跳虫科; Enchytraeidae:线蚓科;Lithobiidae:石蜈蚣科;Geophilidae:地蜈蚣科; Juliformia:马陆目; Formicidae:蚁科; Staphylinidae:隐翅虫科; Diptera larva:双翅目幼虫; Elateridae larvae:叩甲科幼虫; Coleoptera larvae:鞘翅目幼虫; Aphidoidae:蚜科; Projapygidae:原铗尾虫科; Oribatida:甲螨亚目; Gamasida:革螨亚目;Actinedida:辐螨亚目; Ptiliidae:缨甲科;SM:含水率;TEM:温度;pH:pH;TOC:有机质;N:速效N;P:速效P;K:速效K

Fig.6   The redundancy analysis (RDA) between main soil fauna and soil environmental factors in Changbai Mountains

4 结论与讨论

4.1 结论

水平分布,大型土壤动物的多样性在春季为次生针阔混交林最高,夏、秋季为原始针阔混交林最高。无论是大型土壤动物还是中小型土壤动物的多样性在耕地均为最低。垂直分布,土壤动物多样性均呈现出随土层深度增加而降低的趋势。凋落物层土壤动物多样性表现为在原始针阔混交林最高,0~5 cm土层则为次生针阔混交林最高,5~10和10~15 cm土层均为次生落叶阔叶林最高。体现了长白山玄武岩台地土壤动物多样性及其地理分布特征。

根据RDA排序分析结果可知,土壤温度、速效P、有机质和土壤湿度是影响长白山玄武岩台地土壤动物多样性分布的主要因子。

4.2 讨论

1) 在原始针阔混交林、次生针阔混交林、次生落叶阔叶林和耕地3季共获大型土壤动物类群数分别为36、32、26、20类,共获中小型土壤动物类群数分别为39、36、35、23类。无论是大型土壤动物还是中小型土壤动物,类群均呈现出随生境变化逐渐减少的趋势,因此土壤动物多样性也呈现出随生境变化逐渐降低的趋势。分析其原因,原始针阔混交林几乎没有受到采伐干扰、次生针阔混交林是在受到一定择伐后但仍然有针叶树红松存在、次生落叶阔叶林则是皆伐后恢复成林的,而耕地是皆伐后被开垦的生境,这四个生境的干扰程度依次增强,表明随着生境被干扰程度越大,其生境内土壤动物群落多样性就越低。在本文的研究中,无论是大型土壤动物还是中小型土壤动物多样性在原始针阔混交林均为最高,这与作者[17]对小兴安岭森林土壤动物多样性的研究结果相一致。

2) 本研究对中小型土壤动物进行各指数计算时,出现耕地多样性指数和均匀度指数均达到最高,丰富度指数和优势度指数最低。而实际调查中原始针阔混交林、次生针阔混交林和次生落叶阔叶林中所获中小型土壤动物类群和个体数远高于耕地,原因是这3个生境土壤动物类群数虽然高于耕地,但每个类群的个体数相差却不大,因此当类群数较接近时,决定多样性指数高低的关键在于均匀度,即类群多,均匀度高,多样性指数一定高;类群少,均匀度高,多样性指数也可能高[18]。而耕地的均匀度指数是4个生境中最高的,因此出现了耕地多样性指数有时会高于其他3个生境的情况。

The authors have declared that no competing interests exist.


参考文献

[1] 徐化成. 中国红松天然林[M].北京:中国林业出版社,2001.

[本文引用: 1]     

[Xu Huacheng.Nature Forest of Pinus koraiensis in China.Beijing:China Forestry Publishing House, 2001.]

[本文引用: 1]     

[2] 陈大柯,周晓峰,祝宁.天然次生林——结构、功能、动态与经营[M].哈尔滨:东北林业大学出版社,1994.

[本文引用: 1]     

[Chen Dake, Zhou Xiaofeng, Zhu Ning.Natural Secondary Forest-Structure, Function, Dynamic And Management.Harbin:Northeast Forestry University Press, 1994.]

[本文引用: 1]     

[3] Yin X Q,Song B,Dong W H et al.

A review on the eco-geography of soil fauna in China

[J].Journal of Geographical Sciences,2010,20(3):333-346.

https://doi.org/10.1007/s11442-010-0333-4      Magsci      [本文引用: 1]      摘要

<p>This review summarizes main research findings in soil fauna eco-geography in China in the past 30 years. The subject areas and main results were overviewed including biodiversity and eco-geological distribution of soil fauna communities. Studies of ecological distributions of soil fauna and dynamic ranges in space from tropical, subtropical to temperate regions, and in categories from forest, grassland, desert, wetland, farmland to urban ecosystems, the responses and indications of soil fauna to soil environments. Effects of intensive disturbance such as fire, grazing, farming, fertilization on soil fauna include sensitive (e.g. nematode) and rare groups and community indexes. The functions of soil fauna were discussed including environmental construction, environmental purification, litter decomposition and elements cycling. Interactions between soil fauna and other biota in soil ecosystems and linking between aboveground and belowground diversity and the effects of global change on soil fauna community in China were also included. Finally, the authors pointed out common interests in soil fauna eco-geographical studies, which include application of molecule biology into soil fauna taxa; function and mechanism of soil fauna community diversity; interaction between aboveground and belowground ecosystems; effects of disturbance, pollution, biological invasion, and global change on soil fauna community and function. The review is to provide a scientific basis for promoting soil fauna eco-geographical studies in China.</p>
[4] Gao M X,Zhang X P.

Fluctuation of soil fauna community during defoliation decomposition under lime and EM treatment

[J].Acta Ecologica Sinica,2011,31(1):164-174.

https://doi.org/10.1016/S1671-2927(11)60313-1      URL      摘要

The Da Hinggan Mountains are located in the cold-temperate zone,low in temperature and the soil is of the faint acid soil type.This kind of environment limited the development of soil fauna and microorganism.Spraying of effective microorganisms(EM) and lime can increase the activities of microorganisms and lower the acidity of soil,respectively.In this paper,canonical correspondence analysis(CCA) is used to analyze the relationship between soil fauna dynamics and the pH and organic matter dynamics.Distinct difference exists in soil pH value under treatment of lime 1 and lime 2(P=0.001,F=19.94,df=15;P=0.043,F=4.94,df=15) and great difference appeared in soil organic matter under treatment of EM 1 and EM 2(P=0.001,F=19.56,df=15;P=0.048,F=4.71,df=15).It shows that the experiment meets the original research aim. From June 2003 to Oct.2005,lime and EM treatment were used to change the faint acid soil and microorganism activities.Fluctuation of soil fauna community was studied during the defoliation decomposition process in Da Hinggan Mountains by litterbags.It shows that:(1) In total,there are 73 038 soil animals,belonging to 3 phyla,6 classes and 20 orders.Among them,Mesostigmata,Prostigmata,Isotomidae and Oribatida are dominant groups.Entomobryidae,Pseudachorutidae,Onychiuridae and Sminthuridae are common groups,while the others are rare groups.The group number and DG biodiversity index reduced,but in individual number increased under lime and EM treatment.The individual number is influenced by the climatic character of the research zone and fluctuated with seasons.The group number and DG index fluctuated with seasons,lower in June,but higher in August and October.The discipline was not changed under lime and EM treatment.(2) Soil fauna had staged feature during defoliation decomposition in treated plots.And the succession index of each group was different in each plot.The succession indices of dominant and common groups were longer than others.There are 4 colonization types of soil fauna.Type 鈪 is made up of Mesostigmata,Onychiuridae,Tomoceridae,Entomobryidae,Lithobiomorpha and Hypogastruridae,and most of them are dominant and common groups.In different stages,most of them had distinct advantages.Type 鈪 is made up of Prostigmata,Sminthuridae,Staphylinidae,Chironomidae and Oncopoduridae,colonizing in the early stage of defoliation decomposition.Type 鈪 included Isotomidae,Oribatida,Pseudachorutidae,Carabidae,Staphylinidae larva and Corrodentia,appearing at the last stage of defoliation decomposition.Type 鈪 is made up of those appearing only at middle stage of defoliation decomposition.They are low in number and basically rare groups.(3) Canonical correspondence analysis showed that soil pH and organic matter were important factors to affect fluctuation of soil fauna community.Mesostigmata,Prostigmata,Isotomidae,Oribatida,Entomobryidae,Pseudachorutidae,Onychiuridae,Tomoceridae and Lithobiomorpha had better adaptation ability to soil pH and organic matter changes.As the decomposer,soil fauna maybe have influence on defoliation decomposition process and further influence the cycling of nutrition and materials under lime and EM treatment.
[5] Ekschmitt K,Griffiths B S.

Soil animals and its function

[J].European Journal of Soil Biology,1998,10(3):201-215.

[6] Wolters V.

Biodiversity of soil animals and its function

[J].European Journal of Soil Biology,2001,37(4):221-227.

https://doi.org/10.1016/S1164-5563(01)01088-3      URL      [本文引用: 1]      摘要

Current knowledge suggests a high redundancy of soil organism communities, i.e. saturation of function at low levels of species richness. This does not imply, however, that research on soil organism biodiversity and its function is irrelevant. First, it is well established that several species of the decomposer community are functionally more important than others. The 'step' hypothesis developed in this paper shows that under these conditions random loss of species is much more likely to impact ecosystem processes than expected from the redundancy hypothesis. Second, redundant species may gain functional significance by interacting with functionally important species. Third, the number of 'important species' is increased by the multiplicity of functions carried out by soil biota. And finally, alteration in species composition will not be a random process. In fact, functionally important soil biota might be among the first to be affected by large-scale changes in land use. Even if we were to accept that conservation efforts should be confined to the functionally most important species, we would have no idea how to do so. Crossing the 'spatial barrier' seems to be the biggest challenge for future investigations on soil biodiversity, because traditional approaches of community ecology will not be sufficient to answer the questions originating from large-scale impoverishment of the soil fauna. Some examples of promising macroecological topics are discussed: (i) the impact of the regional species pool on local species richness, (ii) the relationship between 伪- and 纬-diversity, and (iii) abundance-occupancy relationships. It is argued that research in this direction will be essential for answering the question of how populations and communities must be organised to resist alterations of the soil habitat at the landscape-level.
[7] 钱程,崔天日,江斌,.

长白山地区晚新生代火山地貌形态研究及其地质应用

[J].第四纪研究,2014,34(2):312-324.

https://doi.org/10.3969/j.issn.1001-7410.2014.02.05      Magsci      [本文引用: 1]      摘要

长白山地区晚新生代火山岩规模巨大而且来源复杂。本次研究主要基于新生火山岩与基底地质体在地貌形态上的差异及火山口群和锥状火山口的地貌特征,利用ASTER-GDEM数据,通过地形高程、地势起伏度、坡度、典型剖面、地形参数等分析手段,对比区域地质调查成果,对长白山晚新生代火山岩区的地貌形态进行解译、分析。解译所得到的研究区晚新生代火山岩、火山口群和锥状火山口的分布特征与地质调查结果基本一致。地形剖面分析揭示甄峰山火山口群呈现熔岩高地的地貌特征,指示裂隙式火山活动,其他火山口群均呈锥状火山地貌特征。各锥状火山口群的地形参数特征与地质资料所确定的形成顺序较为一致。在各锥状火山口群及周边地区共解译锥状火山口149个,正确率75%,预测15个,对进一步野外地质调查具有指示意义。此外,综合解译结果及前人地质调查分析,认为长白山晚新生代火山岩及火山口群分布受NW向深大断裂的控制。

[Qian Cheng, Cui Tianri, Jiang Bin et al.

A study on the characteristics of late cenozoic volcanic terrain in Changbaishan Mountain and its geological application.

Quaternary Sciences, 2014, 34(2):312-324.]

https://doi.org/10.3969/j.issn.1001-7410.2014.02.05      Magsci      [本文引用: 1]      摘要

长白山地区晚新生代火山岩规模巨大而且来源复杂。本次研究主要基于新生火山岩与基底地质体在地貌形态上的差异及火山口群和锥状火山口的地貌特征,利用ASTER-GDEM数据,通过地形高程、地势起伏度、坡度、典型剖面、地形参数等分析手段,对比区域地质调查成果,对长白山晚新生代火山岩区的地貌形态进行解译、分析。解译所得到的研究区晚新生代火山岩、火山口群和锥状火山口的分布特征与地质调查结果基本一致。地形剖面分析揭示甄峰山火山口群呈现熔岩高地的地貌特征,指示裂隙式火山活动,其他火山口群均呈锥状火山地貌特征。各锥状火山口群的地形参数特征与地质资料所确定的形成顺序较为一致。在各锥状火山口群及周边地区共解译锥状火山口149个,正确率75%,预测15个,对进一步野外地质调查具有指示意义。此外,综合解译结果及前人地质调查分析,认为长白山晚新生代火山岩及火山口群分布受NW向深大断裂的控制。
[8] 吕海霞,周鑫斌,张金波,.

长白山4种森林土壤反硝化潜力及产物组成

[J].土壤学报,2011,48(1):39-46

URL      摘要

采用淹水厌氧密闭培养-乙炔抑制法测定了长白山4种森林土壤的反 硝化势以及气态产物N2O、NO和N2的产生量.供试4种森林土壤均呈酸性,pH(H2O)4.5~5.3,有机碳含量24.6~83.0 g kg-1.结果表明,长白山4种典型森林土壤反硝化势及反硝化产物中氮氧化物的比例差异很大.土壤反硝化势强弱顺序依次为:阔叶红松>白桦>红松云杉冷 杉>兴安落叶松,与土壤有机碳和全氮含量呈显著的正相关关系(p<0.01),与土壤pH的相关性不显著.比较加乙炔和不加乙炔处理发现,在培养过程 中,N2O始终是反硝化的主要产物,占反硝化产物的比例变化于50%~85%之间,不随培养时间而发生显著的变化,与土壤pH呈弱负相关关系 (p=0.22).反硝化产物中,NO仅占0.2%~2.4%,随培养时间也未发生有规律的变化,与土壤有机碳含量呈显著的对数负相关关系 (p<0.05).上述结果表明,长白山森林土壤反硝化过程并不能有效地将活性氮转化为惰性氮,反硝化作用的生态环境意义需要重新评估.

[Lyu Haixia, Zhou Xinbin, Zhang Jinbo et al.

Potential and gas products of denitrification in forest soils in Changbai Mountain.

Acta Pedologica Sinica, 2011, 48(1):39-46.]

URL      摘要

采用淹水厌氧密闭培养-乙炔抑制法测定了长白山4种森林土壤的反 硝化势以及气态产物N2O、NO和N2的产生量.供试4种森林土壤均呈酸性,pH(H2O)4.5~5.3,有机碳含量24.6~83.0 g kg-1.结果表明,长白山4种典型森林土壤反硝化势及反硝化产物中氮氧化物的比例差异很大.土壤反硝化势强弱顺序依次为:阔叶红松>白桦>红松云杉冷 杉>兴安落叶松,与土壤有机碳和全氮含量呈显著的正相关关系(p<0.01),与土壤pH的相关性不显著.比较加乙炔和不加乙炔处理发现,在培养过程 中,N2O始终是反硝化的主要产物,占反硝化产物的比例变化于50%~85%之间,不随培养时间而发生显著的变化,与土壤pH呈弱负相关关系 (p=0.22).反硝化产物中,NO仅占0.2%~2.4%,随培养时间也未发生有规律的变化,与土壤有机碳含量呈显著的对数负相关关系 (p<0.05).上述结果表明,长白山森林土壤反硝化过程并不能有效地将活性氮转化为惰性氮,反硝化作用的生态环境意义需要重新评估.
[9] 靳英华,许嘉巍,梁宇,.

火山干扰下的长白山植被分布规律

[J].地理科学,2013, 33(2):204-208.

URL      [本文引用: 1]      摘要

距今约800 a前,长白山天池火山发生大规模普林尼式喷发,喷出的巨量火山浮石及火山灰毁灭性地破坏了长白山植被。由于受喷发倾角和强劲高空西北风影响,使各坡向火山灰和浮石的沉积厚度不同,东坡最厚,南坡和西坡次之,北坡最少。火山灰与浮石形成疏松的成土母质,在流水持续侵蚀下,对破坏后的植被演替产生了长期影响。利用野外调查和现有资料,论证了长白山植被分布独特性规律是长白山火山喷发及喷发物水蚀过程对生态系统作用的结果,确认火山喷发虽历经800多a,目前各坡向植被仍然处在演替的不同进程之中,呈现差异性分布规律。

[Jin Yinghua, Xu Jiawei, Liang Yu et al.

Effects of Volcanic Interference on the Vegetation Distribution of Changbai Mountain.

Scientia Geographica Sinica, 2013, 33(2):204-208.]

URL      [本文引用: 1]      摘要

距今约800 a前,长白山天池火山发生大规模普林尼式喷发,喷出的巨量火山浮石及火山灰毁灭性地破坏了长白山植被。由于受喷发倾角和强劲高空西北风影响,使各坡向火山灰和浮石的沉积厚度不同,东坡最厚,南坡和西坡次之,北坡最少。火山灰与浮石形成疏松的成土母质,在流水持续侵蚀下,对破坏后的植被演替产生了长期影响。利用野外调查和现有资料,论证了长白山植被分布独特性规律是长白山火山喷发及喷发物水蚀过程对生态系统作用的结果,确认火山喷发虽历经800多a,目前各坡向植被仍然处在演替的不同进程之中,呈现差异性分布规律。
[10] 杨美华.

长白山的气候特征及北坡垂直带气候带

[J].气象学报,1981,39(3):311-320.

https://doi.org/10.11676/qxxb1981.034      Magsci      [本文引用: 1]      摘要

长白山是温带大陆季风型高山气候。北坡有明显的垂直气候带、自下而上为山地针阔混交林气候带、山地针叶林气候带、山地岳桦林气候带、高山灌丛气候带、高山荒漠气候带。

[Yang Meihua.

The climatic features of Changbaishan and its vertical climatic zone on the northern slop.

Acta Meteorologica Sinica, 1981, 39(3):311-320.]

https://doi.org/10.11676/qxxb1981.034      Magsci      [本文引用: 1]      摘要

长白山是温带大陆季风型高山气候。北坡有明显的垂直气候带、自下而上为山地针阔混交林气候带、山地针叶林气候带、山地岳桦林气候带、高山灌丛气候带、高山荒漠气候带。
[11] 殷秀琴,蒋云峰,陶岩,.

长白山红松阔叶混交林土壤动物生态分布

[J].地理科学,2011,31(8):935-940.

URL      [本文引用: 1]      摘要

对长白山红松阔叶混交林分布的上缘、典型分布区和分布下缘土壤动物群落进行研究。结果表明,红松阔叶混交林三个分布区土壤动物群落组成存在差异,其中典型分布区土壤动物多样性指数较高,群落组成均匀。甲螨亚目、辐螨亚目、节跳虫科、球角跳虫科、革螨亚目和山跳虫科相关性较大,共同出现在各分布区。土壤动物垂直分布具有明显的表聚性,且红松阔叶混交林的上缘和典型分布区表聚性更为突出。通过灰色综合关联度分析表明,土壤全钾、全氮和有机质含量对土壤动物群落影响较大,而土壤全磷含量和pH对土壤动物的影响次之。

[Yin Xiuqin, Jiang Yunfeng, Tao Yan et al.

Ecogeographical Distribution of Soil Fauna in Pinus koraiensis Mixed Broad-leaved Forest of Changbai Mountains.

Scientia Geographica Sinica, 2011, 31(8):935-940.]

URL      [本文引用: 1]      摘要

对长白山红松阔叶混交林分布的上缘、典型分布区和分布下缘土壤动物群落进行研究。结果表明,红松阔叶混交林三个分布区土壤动物群落组成存在差异,其中典型分布区土壤动物多样性指数较高,群落组成均匀。甲螨亚目、辐螨亚目、节跳虫科、球角跳虫科、革螨亚目和山跳虫科相关性较大,共同出现在各分布区。土壤动物垂直分布具有明显的表聚性,且红松阔叶混交林的上缘和典型分布区表聚性更为突出。通过灰色综合关联度分析表明,土壤全钾、全氮和有机质含量对土壤动物群落影响较大,而土壤全磷含量和pH对土壤动物的影响次之。
[12] Lock K,Janssens F,Janssen C R.

Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn miningarea at Plombières,Belgium

[J].European Journal of Soil Biology,2003,39(1): 25-29.

https://doi.org/10.1016/S1164-5563(02)00006-7      Magsci      摘要

<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">Springtails were sampled monthly with pitfall traps in the ancient Pb-Zn mining area of Plombi&egrave;res for one year. Based on the total soil concentrations of lead, zinc, cadmium and copper, it was expected that zinc would probably have the most adverse effects on the populations. Activity and species richness of springtails were negatively related to the total zinc concentration in the soil, the water-soluble and the calcium chloride extracted zinc fractions. However, these relationships were only significant for the calcium chloride extracted fraction. The latter fraction might therefore be a good indicator of bioavailable zinc for springtails. Despite the high total soil concentrations of zinc, springtails were still quite abundant at all sampling sites. This is probably caused by the low bioavailability of zinc to the springtails in the soils of the study sites.</p>
[13] Wang Q Y,Zhou D M,Cang L et al.

Indication of soil heavy metal pollution with earthworms and soil microbial biomass carbon in the vicinity of an abandoned copper mine in Eastern Nanjing, China

[J].European Journal of Soil Biology,2009,45(3): 229-234.

https://doi.org/10.1016/j.ejsobi.2008.12.002      Magsci      摘要

<p id="">Mining activities can cause severe soil pollution in mining area and its surroundings. Nevertheless, very little is known about the local environmental risk after the mining activities are ended in China. Earthworms and soil microbial biomass carbon (SMBC), which are often used as bioindicators of soil pollution, were studied in order to support chemical analyses in assessing the status of soil heavy metal pollution around an abandoned copper mine in eastern Nanjing, China. Seven earthworm species belonging to three families (Megascolecidae, Moniligastridae, and Lumbricidae) were present. Correlations between earthworm densities or biomass and a range of soil physical and chemical parameters were generally poor; however, several linear regression models based on the soil physicochemical characteristics and metal concentrations in earthworm bodies were established for each metal (Cu, Cd, and Zn) and each earthworm family. Therefore, metal bioaccumulation by soil-dwelling earthworms can be used as an ecological indicator of metal availability for this area. The SMBC, which varied from 83.9 to 499&#xA0;g&#xA0;kg<sup>&minus;1</sup>, did not correlate with the soil heavy metal concentrations, and SMBC is not proposed as a sensitive indicator for evaluating the environmental effects of soil heavy metal pollution in this area.</p>
[14] Magura T,Tóthmérész B,Elek Z.

Diversity and composition of carabids during a forestry cycle

[J].Biodiversity and Conservation,2003,12(1):73-85.

https://doi.org/10.1023/A:1021289509500      Magsci      [本文引用: 1]      摘要

<a name="Abs1"></a>Carabids (Carabidae, Coleoptera) were studied for 2 yearsto explore changes in their diversity and composition during a forestry cycle inthe Hungarian Mountain Range. Native beech forest was clear-cut and replantedwith Norway spruce. Recently planted (5 years old), young (15years old), middle-aged (30 years old) and old spruceplantations (50 years old) were studied using pitfall traps. Ourresults showed that the species richness of carabids was significantly lower inthe plantations than in the native beech forest. Species composition washomogeneous in the beech forest. <img src="/content/GK1RX6001534460R/xxlarge946.gif" alt="beta" align="MIDDLE" border="0">-Diversity of the 15&#x2013;30year old plantations was also low, and it increased slightlytowards ageing. Heterogeneity of the species composition of the 5year old plantation was higher than that of the others, whichreflected the patchiness of the young plantation. The main tendencies of thecompositional changes were as follows. Deciduous forest specialists decreasedsignificantly in abundance in the plantations; they appeared in highabundance only in the beech forest. Species characteristic of open habitatsincreased remarkably in abundance in the recently established plantation.Multiple linear regression between the diversity of carabids and of 12environmental variables shows that the pH and compaction of the soil, and thecover of leaf litter had a significant effect in determining diversity ofcarabids.
[15] Lepš J,Šmilauer P.Multivariate analysis of ecological data using CANOCO[M].Cambridge:Cambridge University Press,2003.

[本文引用: 1]     

[16] 殷秀琴,吴东辉,韩晓梅.

小兴安岭森林土壤动物群落多样性的研究

[J].地理科学,2003,23(3):316-322.

https://doi.org/10.3969/j.issn.1000-0690.2003.03.011      URL      摘要

对小兴安岭阔叶红松林、次生白桦林、云冷杉红松林、兴安落叶松林、云冷杉林和赤杨林 6种生境中的土壤动物群落多样性进行了研究。结果表明 ,在阔叶红松林生境中 ,无论大型土壤动物还是中小型土壤动物 ,多样性都较高 ,表明其生境条件比其它 5种生境优越。土壤动物的多样性与丰富度、均匀度呈正相关 ,与优势度呈负相关 ,与个体数没有直接相关关系。土壤动物的垂直多样性分布 ,随土层深度增加而减少 ,但递减速率不同 ,中小型土壤动物表聚性要比大型土壤动物明显。

[Yin Xiuqin, Wu Donghui, Han Xiaomei.

Diversity of soil animals community in Xiao Hinggan Mountains.

Scientia Geographica Sinica, 2003, 23(3):316-322.]

https://doi.org/10.3969/j.issn.1000-0690.2003.03.011      URL      摘要

对小兴安岭阔叶红松林、次生白桦林、云冷杉红松林、兴安落叶松林、云冷杉林和赤杨林 6种生境中的土壤动物群落多样性进行了研究。结果表明 ,在阔叶红松林生境中 ,无论大型土壤动物还是中小型土壤动物 ,多样性都较高 ,表明其生境条件比其它 5种生境优越。土壤动物的多样性与丰富度、均匀度呈正相关 ,与优势度呈负相关 ,与个体数没有直接相关关系。土壤动物的垂直多样性分布 ,随土层深度增加而减少 ,但递减速率不同 ,中小型土壤动物表聚性要比大型土壤动物明显。
[17] Coleman D C.

From peds to paradoxes: Linkages between soil biota and their influences on ecological processes

[J].Soil Biology and Biochemistry,2008,40(2):271-289.

https://doi.org/10.1016/j.soilbio.2007.08.005      Magsci      [本文引用: 1]      摘要

<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">Soils and their biota have been studied by a variety of observational and experimental methods that have allowed biologists to infer their structural and functional interactions. Viewing progress made over the last 10 years, it is apparent that an increasing diversity of analytical and chemical methods are providing much more detailed information about feeding preferences and niche overlaps of speciose groups such as oribatid mites.</p><p id="">Other topics in which considerable progress has been made include new advances in knowledge of root and mycorrhiza production and turnover and their impacts on soil ecosystems; soil biota, exudations and secretions and soil aggregation phenomena; the biology of invasive species in soils; soil biodiversity, legacies and linkages to soil processes; and soil biodiversity and ecosystem functional responses. Throughout the review I suggest ways for new progress to be made in future research.</p>

/