中国城市人工智能发展的时空演化特征及其影响因素
|
|
邹伟勇, 熊云军
|
Spatio-temproral Evolution Characteristics of AI Development in Chinese Cities and Its Influencing Factors
|
|
Zou Weiyong, Xiong Yunjun
|
|
表4 空间杜宾模型及其分解模型的估计结果
|
Table 4 Estimation results of spatial Dubin model and its decomposition model
|
|
| 变量 | 主效应项 | 空间滞后项 | 直接效应 | 间接效应 | 总效应 | | 注:括号内数值为各系数的标准误差;***、**、*分别表示1%,5%,10%水平的显著性; lnmar为市场化水平; lngov为政府干预; lnpop为人口密度;lnhum为人力资本;lnfdi为外商投资;lnfin为金融发展;lnind为产业升级;lninst为基础设施建设;SDM-SAR为SDM模型是否会退化为SAR模型的LR检验;SDM-SEM为SDM模型是否会退化为SEM模型的LR检验;Both-Ind为时空双固定模型还是空间固定模型更优的LR检验;Both-Time为时空双固定模型还是时间固定模型更优的LR检验;不含港澳台数据。 | | lnmar | 0.016 | 0.394*** | 0.032* | 0.846*** | 0.878*** | | (0.018) | (0.068) | (0.019) | (0.151) | (0.153) | | lngov | 0.247*** | 0.261 | 0.260*** | 0.806** | 1.066*** | | (0.054) | (0.189) | (0.051) | (0.374) | (0.376) | | lngov2 | −0.097*** | −0.225*** | −0.106*** | −0.571*** | −0.677*** | | (0.012) | (0.040) | (0.011) | (0.081) | (0.079) | | lnpop | 0.561*** | 1.398*** | 0.625*** | 3.568*** | 4.193*** | | (0.110) | (0.464) | (0.109) | (0.975) | (0.999) | | lnhum | 0.068** | 0.837*** | 0.102*** | 1.810*** | 1.912*** | | (0.030) | (0.113) | (0.030) | (0.247) | (0.251) | | lnfdi | 0.022 | 0.184*** | 0.029* | 0.408*** | 0.437*** | | (0.015) | (0.056) | (0.016) | (0.120) | (0.123) | | lnfin | 0.236*** | 0.822*** | 0.269*** | 1.987*** | 2.255*** | | (0.039) | (0.148) | (0.038) | (0.314) | (0.320) | | lnind | 0.207*** | 0.284 | 0.228*** | 0.774 | 1.002* | | (0.075) | (0.284) | (0.073) | (0.583) | (0.590) | | lninst | 0.204*** | 0.096 | 0.210*** | 0.405 | 0.616** | | (0.043) | (0.153) | (0.041) | (0.302) | (0.304) | | ρ | 0.526*** | | sigma2_e | 0.367*** | | HausmanTest | 811.020*** | | SDM-SAR | 213.880*** | | SDM-SEM | 339.800*** | | Both-Ind | 139.370*** | | Both-Time | 2655.250*** | | R-squared | 0.287 | | 观测值 | 5700 | | 样本数 | 285 |
|
|
|