SCIENTIA GEOGRAPHICA SINICA ›› 2017, Vol. 37 ›› Issue (2): 209-216.doi: 10.13249/j.cnki.sgs.2017.02.006
Special Issue: 地理大数据
• Orginal Article • Previous Articles Next Articles
Received:
2016-02-25
Revised:
2016-08-05
Online:
2017-02-25
Published:
2017-02-25
Supported by:
CLC Number:
Xin Li, Deyou Meng. Distributed Incremental Traffic Flow Big Data Forecasting Method Based on Road Network Correlation[J].SCIENTIA GEOGRAPHICA SINICA, 2017, 37(2): 209-216.
Table 1
The MSE comparison of two predict methods results"
编号 | 动态 STARIMA | 路网相关STARIMA | 编号 | 动态 STARIMA | 路网相关STARIMA | 编号 | 动态 STARIMA | 路网相关STARIMA |
---|---|---|---|---|---|---|---|---|
1 | 8638.27 | 6643.68 | 22 | 3338.29 | 2839.48 | 43 | 3977.67 | 3058.83 |
2 | 7396.01 | 6032.39 | 23 | 6236.77 | 5064.66 | 44 | 4458.98 | 3847.45 |
3 | 6631.31 | 4983.57 | 24 | 7784.39 | 5338.54 | 45 | 8979.37 | 7432.82 |
4 | 8362.58 | 5986.44 | 25 | 2526.67 | 1438.33 | 46 | 8443.69 | 6234.73 |
5 | 2948.21 | 1863.49 | 26 | 3464.32 | 1974.34 | 47 | 2798.55 | 1846.49 |
6 | 4820.22 | 2799.35 | 27 | 8764.39 | 5890.43 | 48 | 3985.42 | 2275.45 |
7 | 9230.23 | 7390.32 | 28 | 6549.48 | 5438.93 | 49 | 7849.43 | 5893.37 |
8 | 7857.46 | 6074.45 | 29 | 12974.45 | 8865.29 | 50 | 6692.38 | 5624.78 |
9 | 15324.01 | 12984.61 | 30 | 13084.44 | 10474.63 | 51 | 6639.32 | 4542.43 |
10 | 11479.46 | 8753.05 | 31 | 5478.34 | 3740.35 | 52 | 5873.57 | 4147.57 |
11 | 3892.27 | 2775.73 | 32 | 4858.34 | 3275.39 | 53 | 3720.32 | 2475.54 |
12 | 4917.48 | 3295.48 | 33 | 7434.95 | 6578.36 | 54 | 3920.28 | 2143.27 |
13 | 3729.33 | 2903.57 | 34 | 7868.23 | 5920.49 | 55 | 2039.58 | 1343.47 |
14 | 3928.23 | 2638.57 | 35 | 6743.23 | 4839.33 | 56 | 3235.62 | 1634.57 |
15 | 4478.19 | 3902.29 | 36 | 7820.33 | 5923.67 | 57 | 4838.88 | 3822.44 |
16 | 6903.36 | 4632.84 | 37 | 8068.35 | 6488.38 | 58 | 5749.23 | 4727.28 |
17 | 10573.48 | 7296.23 | 38 | 7819.28 | 6367.35 | 59 | 6403.45 | 4884.74 |
18 | 9033.54 | 7018.83 | 39 | 3894.22 | 2057.75 | 60 | 6653.63 | 4954.54 |
19 | 4847.34 | 3892.33 | 40 | 4780.44 | 3628.65 | 61 | 7570.49 | 6343.45 |
20 | 3309.21 | 3087.88 | 41 | 7897.36 | 4929.38 | 62 | 8788.48 | 6932.43 |
21 | 5789.22 | 4274.49 | 42 | 8902.34 | 5563.37 |
[1] | 李德仁,马军,邵振峰.论时空大数据及其应用[J].卫星应用,2015,(9):7-11. |
[Li Deren, Ma Jun, Shao Zhenfeng.The theory of space-time big data and its application. Satellite Application, 2015, (9):7-11.] | |
[2] | Bose J H, Andrzejak A, Hogqvist M.Beyond online aggregation: Parallel and incremental data mining with online Map-Reduce[M]//Proc of Workshop on Massive Data Analytics on the Cloud. New York:ACM,2010 |
[3] | Aghabozorgi S, Saybani M R, Wah T Y.Incremental clustering of time-series by fuzzy clustering. Journal of Information Science and Engineering,2012,28(4):671-688 |
[4] | Laptev N, Zeng K, Zaniolo C.Very fast estimation for result and accuracy of big data analysis:The EARL system[M]//Proc of ICDE.Piscataway,NJ:IEEE,2013:1296-1299. |
[5] | Zhang S B, Han J Z,Liu Z Y et al. Accelerating MapReduce with Distributed Memory Cache[M]//Proc of ICPADS. Piscataway, NJ:IEEE, 2009:472-478. |
[6] | Stephanedes Y J, Michalopoulos P G.Improved estimation of traffic flow for real-time control[M]// Transportation Research Record 795, Washington DC: Transportation Research Board, 1981:28-39. |
[7] |
Okutani I, Stephanedes Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B:Methodological, 1984,18(1):1-11.
doi: 10.1016/0191-2615(84)90002-X |
[8] | Ahmaed M S, Cook A R.Analysis of freeway traffic time-series data by using Box-Jenkins technique[M]//Transportation Research Record 722. Washington DC: Transportation Research Board, l 979:l-9. |
[9] |
Doughetry M S, Cobbett M R.Short-term inter-urban traffic forecasts using neural networks[J]. International Journal of Forecasting, l997, 13(1):2l-31.
doi: 10.1016/S0169-2070(96)00697-8 |
[10] |
Ledoux C.An urban traffic flow model integrating neural networks[J]. Transportation Research Part C: Emerging Technologies, 1997, 5(5):287-300.
doi: 10.1016/S0968-090X(97)00015-6 |
[11] | Yue Yang.Spatial-temporal dependency of traffic flow and its implications for short-term traffic forecasting[D]. Hong Kong: The University of Hong Kong, 2006. |
[12] |
Kamarianakis Y, Prastacos P.Space-time modeling of traffic flow[J]. Computers & Geosciences, 2005, 31:119-133.
doi: 10.1016/j.cageo.2004.05.012 |
[13] |
Martin R L, Oeppen J E.The identification of regional forecasting models using space-time correlation functions[J]. Trans Inst Brit Geogr, 1975, 66: 95-118.
doi: 10.2307/621623 |
[14] | 余碧莹,邵春福.基于时空模型的道路网交通状态预测[M]//第四届中国智能交通年会论文集.青岛:全国智能交通系统协调指导小组和山东省人民政府, 2008: 546-551. |
[Yu Biying, Shao Chunfu.Traffic state forecast of road network based on space-time model//Proceedings of the Fourth China Annual Conference on ITS. Qingdao: The intelligent transportation system to coordinate and guide team and the People’s Government of Shandong Province, 2008:546-551.] | |
[15] | Lin Shulan, Huang Hongqiang, Zhu Daqi et al. The application of space-time ARIMA model On traffic flow forecasting[M] // Proceedings of the 8th International Conference on Machine Learning and Cybernetics. Baoding: Hebei University and IEEE SMC Association, 2009:3408-3412. |
[16] | Min Xinyu, Hu Jianming, Chen Qi et al. Short-term traffic flow forecasting of urban network based on dynamic STARIMA model[M] // Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, MO, USA: Institute of Electrical and Electronics Engineers, 2009:461-466. |
[17] | 瞿莉. 基于动态交通流分配参数的网络交通状态建模与分析[D].北京:清华大学,2010. |
[Qu Li.Modeling and analyzing the network-level traffic status based on dynamic traffic assignment ratios. Beijing: Tsinghua University, 2010.] | |
[18] |
张和生,张毅,胡东成,等.区域交通状态分析的时空分层模型[J].清华大学学报:自然科学版,2007, 47(1):157-160.
doi: 10.3321/j.issn:1000-0054.2007.01.042 |
[Zhang Hesheng, Zhang Yi, Hu Dongcheng et al. Spatial-temporal hierarchical model for area traffic state analysis. Journal of Tsinghua University: Sci &Technol. 2007, 47(1):157-160.]
doi: 10.3321/j.issn:1000-0054.2007.01.042 |
|
[19] |
王晓原,张敬磊.交通流信息挖掘的非参数概率变点模型研究[J].武汉理工大学学报:交通科学与工程版, 2010, 34(4):801-805.
doi: 10.3963/j.issn.1006-2823.2010.04.039 |
[Wang Xiaoyuan, Zhang Jinglei.Study on Nonparametric Probability Change-point Model for Traffic Flow Exploitation. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2010, 34(4):801-805.]
doi: 10.3963/j.issn.1006-2823.2010.04.039 |
|
[20] | 郭志懋,周傲英.数据质量和数据清洗研究综述[J].软件学报, 2002, 13(11): 2076-2082. |
[Guo Zhimao, Zhou Aoying.Research on Data Quality and Data Cleaning: A Survey. Journal of Software, 2002, 13(11): 2076-2082.] | |
[21] | 张敬磊,王晓原.基于非线性组合模型的交通流预测方法[J].计算机工程, 2010, 36(5):202-205. |
[Zhang Jinglei, Wang Xiaoyuan.Traffic Flow Prediction Method Based on Non-linear Hybrid Model[J]. Computer Engineering, 2010, 36(5):202-205.] | |
[22] |
王晓原,张敬磊,吴芳.交通流数据清洗规则研究[J].计算机工程, 2011, 37(20):191-193.
doi: 10.3969/j.issn.1000-3428.2011.20.066 |
[Wang Xiaoyuan, Zhang Jinglei, Wu Fang.Research on Traffic Flow Data Cleaning Rules. Computer Engineering, 2011, 37(20):191-193.]
doi: 10.3969/j.issn.1000-3428.2011.20.066 |
|
[23] |
Pfeifer P E, Deutsch S J.A three-stage iterative procedure for space-time modeling[J]. Technometrics, 1980, 22(1): 35-47.
doi: 10.1080/00401706.1980.10486099 |
[24] |
Pfeifer P E, Deutsch S J.Identification and interpretation of first-order space-time ARMA models[J]. Technometrics, 1980, 22(3):397-408.
doi: 10.1080/00401706.1980.10486172 |
[25] |
Pfeifer P E, Deutsch S J.Variance of the sample-time autocorrelation function of contemporaneously correlated variables[J]. SIAM Journal of Applied Mathematics, Series A, 1981, 40(1):133-136.
doi: 10.1137/0140010 |
[26] | Deng Shuo, Hu Jianming, Wang Yin et al. Urban road network modeling and real-time prediction based on house holder transformation and adjacent vector[M] //Advances in Neural Networks—ISNN 2009. Berlin Heidelberg: Springer, 2009:899-908. |
[27] | Bezdek J C, Pal N R.Some new indexes of cluster validity[J]. IEEE Trans Syst Man Cy, 1998, 28: 301-315. |
[28] |
Kamarianakis Y, Prastacos P.Space-time modeling of traffic flow[J]. Comput Geosci-UK, 2005, 31: 119-133.
doi: 10.1016/j.cageo.2004.05.012 |
[29] |
牛新征,佘堃.面向大规模数据的快速并行聚类划分算法研究[J].计算机科学,2012,(1):134-137,151.
doi: 10.3969/j.issn.1002-137X.2012.01.030 |
[Niu Xinzheng, She Kun.Study of Fast Parallel Clustering Partition Algorithm for Large Data Sets.Computer Science, 2012,(1):134-137,151.]
doi: 10.3969/j.issn.1002-137X.2012.01.030 |
|
[30] | Smith B L, Demeisky M J.Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997,123(4):261-266. |
[1] | Zhang Jingqi, Shi Wenbao, Xiu Chunliang. Urban Research Using Points of Interest Data in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(1): 140-148. |
[2] | Wang Bo, Zhen Feng, Sun Honghu. The Spatio-temporal Patterns of Public Responses Towards Rainstorms and Associated Floods Based on Social Media Check-in Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(9): 1543-1552. |
[3] | Jiang Lili, Yuan Jiadong, Di Yushuang, Liu Yongqi. Urban Spatial Structure of Jilin Province and Scope of Local Central City Hinterland [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(8): 1319-1327. |
[4] | Zheng Longfei, Gu Weinan, Long Fenjie, Zhang Su. The Urban Network Structure and Influential Mechanism of Guizhou Province from the Perspective of Various Flows [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(6): 939-947. |
[5] | Xue Bing, Xiao Xiao, Li Jingzhong, Xie Xiao. Analysis of Spatial Economic Structure of Northeast China Cities Based on Points of Interest Big Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(5): 691-700. |
[6] | Zhang Li, Zhao Yingjie, Lu Yuqi, Teng Ye. Urban Time Accessibility of Railway Passenger Traffic Flow in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(3): 354-363. |
[7] | Ding Liang, Niu Xinyi, Shi Cheng. Evaluation of the Implementation of Polycentric System Plan in Mega-City Based on Conformance Criteria: A Case Study of Hangzhou City [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(2): 211-219. |
[8] | Ta Na, Zeng Yutian, Zhu Qiuyu, Wu Jiayu. Relationship Between Built Environment and Urban Vitality in Shanghai Downtown Area Based on Big Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(1): 60-68. |
[9] | Zhang Weili, Ye Xinyue, Li Dong, Fu Jibin, Wu Menghe. Network Association, Spillover Effect and China's Regional Economic Growth Based on Tencent's Location Big Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(9): 1371-1377. |
[10] | Liu Jun, Wang Shenghong, Jin Mengmeng, Li Ningxin. Reconstruction of Peach Blossom-viewing Date of China Using Weibo Big Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(9): 1446-1454. |
[11] | Zhe Feng, Hongqiang Jiang, Yaling Lu. China's Economic-environment Comprehensive Zoning Based on Big Data Method and SOFM Clustering [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(2): 242-251. |
[12] | Wang Xinyue, Cao Chanchan. Domestic Tourist Market Structure and Spatial-temporal Characteristics of Tourism Flow in Qingdao City Based on Online Travel Notes [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(12): 1919-1928. |
[13] | Gu Qiushi, Zhang Haiping, Chen Min, Xie Yi. Hierarchical Network Structures and Regional Differentiations of Tourist Source Destinations of Nanjing Based on Cellular Signaling Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(11): 1739-1748. |
[14] | Sangzhaxi Luo, Feng Zhen, Qiuyi Yin. How Built Environment Influence Public Bicycle Usage: Evidence from the Bicycle Sharing System in Qiaobei Area, Nanjing [J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(3): 332-341. |
[15] | Xiaorui Zhang, Qian Hua, Zhigang Cheng. Space Pattern of Urban Population Distribution Based on Space Syntax and LBS Big Data [J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(11): 1809-1816. |
|