SCIENTIA GEOGRAPHICA SINICA ›› 2017, Vol. 37 ›› Issue (9): 1310-1317.doi: 10.13249/j.cnki.sgs.2017.09.003
Special Issue: 地理大数据
• Orginal Article • Previous Articles Next Articles
Received:
2016-11-14
Revised:
2017-03-04
Online:
2017-11-20
Published:
2017-11-20
Supported by:
CLC Number:
Weihua Liao, Xin Nie. Spatial Association Analysis for Urban Service Based on Big Data[J].SCIENTIA GEOGRAPHICA SINICA, 2017, 37(9): 1310-1317.
Table 2
The top 5 rules by support of Nanning"
距离(m) | 规则 | 支持度 | 置信度 | 提升度 |
---|---|---|---|---|
10 | {经济型酒店} => {酒店} | 0.1082 | 1.0000 | 7.1012 |
{酒店} => {经济型酒店} | 0.1082 | 0.7681 | 7.1012 | |
{川菜} => {全部中餐} | 0.0445 | 0.8738 | 8.5759 | |
{个性写真} => {丽人} | 0.0429 | 0.6963 | 3.5576 | |
{婚纱摄影} => {个性写真} | 0.0389 | 0.7852 | 12.7380 | |
50 | {甜点饮品} => {小吃快餐} | 0.2773 | 0.7772 | 1.4086 |
{其他美食} => {小吃快餐} | 0.2301 | 0.7989 | 1.4478 | |
{蛋糕} => {小吃快餐} | 0.2293 | 0.7140 | 1.2940 | |
{经济型酒店} => {酒店} | 0.1964 | 1.0000 | 3.9118 | |
{酒店} => {经济型酒店} | 0.1964 | 0.7684 | 3.9118 | |
100 | {甜点饮品} => {小吃快餐} | 0.4696 | 0.9012 | 1.2409 |
{丽人} => {小吃快餐} | 0.4450 | 0.8284 | 1.1406 | |
{蛋糕} => {小吃快餐} | 0.4086 | 0.8631 | 1.1883 | |
{其他美食} => {小吃快餐} | 0.4013 | 0.9001 | 1.2393 | |
{蛋糕} => {甜点饮品} | 0.3500 | 0.7392 | 1.4186 | |
500 | {甜点饮品} => {小吃快餐} | 0.9016 | 0.9944 | 1.0096 |
{小吃快餐} => {甜点饮品} | 0.9016 | 0.9154 | 1.0096 | |
{蛋糕} => {小吃快餐} | 0.8982 | 0.9932 | 1.0084 | |
{小吃快餐} => {蛋糕} | 0.8982 | 0.9119 | 1.0084 | |
{丽人} => {小吃快餐} | 0.8897 | 0.9950 | 1.01024 | |
1000 | {蛋糕} => {小吃快餐} | 0.9928 | 1.0000 | 1.0004 |
{小吃快餐} => {蛋糕} | 0.9928 | 0.9932 | 1.0004 | |
{甜点饮品} => {小吃快餐} | 0.9924 | 1.0000 | 1.0004 | |
{小吃快餐} => {甜点饮品} | 0.9924 | 0.9928 | 1.0004 | |
{甜点饮品} => {蛋糕} | 0.9906 | 0.9982 | 1.0054 |
[10] |
Zheng Y, Zhang L, Ma Z et al. Recommending friends and locations based on individual location history[J]. ACM Transactions on the Web, 2011, 5(1):1-5.
doi: 10.1145/1921591.1921596 |
[11] | 甄峰,余洋,汪侠,等. 城市汽车服务业空间集聚特征研究:以南京市为例[J].地理科学, 2012, 32(10):1200-1208. |
[Zhen Feng,Yu Yang,Wang Xia et al.The Spatial Agglomeration Characteristics of Automotive Service Industry: A Case Study of Nanjing. Scientia Geographica Sinica, 2012, 32(10):1200-1208.] | |
[12] |
Agrawal R.Mining association rules between sets of items in large databases[J]. Acm Sigmod Record,1993,22(2):207-216.
doi: 10.1145/170035.170072 |
[13] | 高源, 韩增林, 杨俊,等. 中国海洋产业空间集聚及其协调发展研究[J]. 地理科学, 2015, 35(8):946-951. |
[Gao Yuan, Han Zenglin,Yang Jun et al.Spatial Agglomeration of Marine Industries and Region Coordinated Development in China. Scientia Geographica Sinica,2015,35(8):946-951.] | |
[14] |
Adomavicius G,Tuzhilin A.Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(6):734-749.
doi: 10.1109/TKDE.2005.99 |
[15] |
Linden G,Smith B,York J.Amazon.com Recommendations: Item-to-Item Collaborative Filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80.
doi: 10.1109/MIC.2003.1167344 |
[16] |
Khorsand A,Haddad M,Sochor H et al. Introduction to arules —A computational environment for mining association rules and frequent item sets[J]. Journal of Statistical Software, 2010, 14(15):1-25.
doi: 10.1016/j.jspi.2004.04.017 |
[17] |
Hahsler M,Chelluboina S,Hornik K et al.The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets[J]. Journal of Machine Learning Research, 2011, 12(12):2021-2025.
doi: 10.1093/imamci/dnr006 |
[1] | 薛东前, 石宁, 公晓晓. 西安市生产者服务业空间布局特征与集聚模式研究[J]. 地理科学, 2011, 31(10):1195-1201. |
[Xue Dongqian, Shi Ning,Gong Xiaoxiao.Spatial Features and Agglomeration of Producer Services in Xi’an City, China.Scientia Geographica Sinica, 2011, 31(10):1195-1201.] | |
[2] | 王峰,余伟,李石君. 基于PMR 架构的兴趣点推荐研究[J].中国科学:信息科学,2015,45(11): 1503-1520. |
[Wang Feng,Yu Wei,Li Shijun.Study of POI-s recommendation based on a PMR framework. Scientia Sinica(Informationis),2015,45(11): 1503-1520.] | |
[3] | 李佳洺, 孙铁山, 张文忠. 中国生产性服务业空间集聚特征与模式研究——基于地级市的实证分析[J]. 地理科学, 2014, 34(4):385-393. |
[Li Jiaming, Sun Tieshan, Zhang Wenzhong.Spatial Cluster Characteristics and Modes of Producer Services in China. Scientia Geographica Sinica, 2014, 34(4):385-393.] | |
[4] |
Zheng Y.Methodologies for Cross-Domain Data Fusion: An Overview[J]. IEEE Transactions on Big Data,2015,1(1):16-34.
doi: 10.1109/TBDATA.2015.2465959 |
[5] | Zheng Y, Capra L,Wolfson O et al.Urban computing:Concepts,methodologies,and applications[J]. ACM Trans. Intell.Syst. Technol.,2014,5(3):38-55. |
[6] |
Zheng Y.Trajectory data mining: An overview[J]. ACM Trans.Intell. Syst. Technol.,2015,6(3): 1-29.
doi: 10.1145/2743025 |
[7] |
Zheng Y,Xie X.Learning travel recommendations from user-generated GPS traces[J]. ACM Trans. Intell. Syst. Technol.,2011,2(1):2-19.
doi: 10.1145/1889681.1889683 |
[8] |
Nicholas J Y, Zheng Y, Xie X et al.Discovering Urban Functional Zones Using Latent Activity Trajectories[J]. IEEE Transactions on Knowledge and Data Engineering,2016,27(3):712-725.
doi: 10.1109/TKDE.2014.2345405 |
[9] |
Xiao X Y, Zheng Y,Luo Q et al. Inferring social ties between users with human location history[J]. J Ambient Intell Human Comput,2014,5(1):3-19.
doi: 10.1007/s12652-012-0117-z |
[18] |
Lüscher P,Weibel R.Exploiting empirical knowledge for automatic delineation of city centres from large-scale topographic databases[J]. Computers Environment & Urban Systems, 2013, 37(1):1733-1738.
doi: 10.1016/j.compenvurbsys.2012.07.001 |
|