
Regional environment and technology: Pattern recognition, diachronic evolution and interactive effects
Yu Liping, Zhang Kuangwei, Xu Hang, Shen Jie, Hong Jinzhu
GEOGRAPHICAL SCIENCE ›› 2024, Vol. 44 ›› Issue (1) : 40-49.
Regional environment and technology: Pattern recognition, diachronic evolution and interactive effects
Ecological environment and scientific and technological innovation are two systems that can not be ignored in social development. They are independent and blend with each other. Promoting the coordinated development of environment and science and technology is of great significance to realize sustainable development. Based on the analysis of the interaction mechanism between environment and technology, this article divides environment and technology into four types of models based on the four quadrant partition model: synchronous leading, environmental priority, technology priority, and synchronous lagging. The study uses panel data from 30 regions in China from 2009 to 2018 as samples, and uses simultaneous equation models and Bayesian vector autoregressive models to analyze their mutual influence and interaction relationship. The results show that: 1) During the observation period, the regional environment and technological innovation were still in an overall upgrading stage, and their coexistence pattern showed an unbalanced pattern in which the eastern region was superior to the central and western regions; 2) Environmental quality has a positive impact on the development of science and technology; 3) The impact of scientific and technological innovation on environmental quality is not significant; 4) It is a long-term process to realize the benign interaction between environment and science and technology. It also puts forward countermeasures and suggestions: develop environmental and technological development policies tailored to local conditions, strengthen long-term management mechanisms for technological innovation and ecological environment, and implement differentiated development strategies based on local resource endowments; technological innovation should adhere to a green orientation, take into account ecological benefits to the greatest extent possible, and pay more attention to ecological environment protection while developing new technologies and products. It should also provide important technical support for ecological environment construction; ecological construction should actively cultivate a good environment for scientific and technological innovation, allowing the vitality of scientific and technological innovation to fully emerge, gradually forming a good atmosphere for innovation, and thus forming a good situation where the ecological environment feeds back scientific and technological innovation.
environment quality / science and technology innovation / simultaneous equation model / Bayesian vector autoregressive model (BVAR model) {{custom_keyword}} /
Table 1 Indicator system of scientific and technological level表1 科技水平指标体系 |
一级指标 | 二级指标 | 权重 |
科技水平 | 发明专利申请受理数/件 | 0.415 |
R&D经费内部支出/万元 | 0.366 | |
国际科技期刊论文发表数/篇 | 0.219 |
Table 2 Indicator system of environmental quality表2 环境评价指标体系 |
一级指标 | 二级指标 | 权重 | 三级指标 | 权重 |
环境质量 | 生态环境 | 0.552 | 建成区绿化覆盖率/% | 0.475 |
人均公园绿地面积/m2 | 0.525 | |||
污染治理 | 0.448 | 工业固体废物综合利用率/% | 0.235 | |
城市污水处理率/% | 0.192 | |||
生活垃圾无害化处理率/% | 0.293 | |||
单位土地面积二氧化硫排放强度/(t/km2) | 0.123 | |||
单位土地面积碳排放强度/(t/km2) | 0.157 |
Table 3 Descriptive statistics of variables表3 变量描述统计 |
变量 | 单位 | 均值 | 极大值 | 极小值 | 标准差 | 样本数量 |
注:“/”表示无单位;暂缺港澳台和西藏数据。 | ||||||
环境质量 | / | 51.098 | 76.724 | 26.530 | 10.247 | 30×10=300 |
科技水平 | / | 48.261 | 92.381 | 30.624 | 16.004 | |
研发资本投入 | 万元 | 4127352.134 | 27046969.000 | 57806.000 | 4925955.784 | |
研发人员投入 | 人年 | 114192.716 | 762733.000 | 4008.000 | 126412.486 | |
城市化水平 | % | 55.895 | 89.600 | 29.890 | 12.848 | |
人口密度 | 人/km2 | 460.696 | 3825.692 | 7.996 | 684.265 | |
利润率 | % | 9.257 | 22.408 | 0.576 | 3.469 |
Table 4 Development and changes in the coexistence mode of environment and technology in various regions表4 各地区环境与科技共存模式的发展变化 |
地区 | 2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
注:暂缺港澳台和西藏数据;HH表示高环境质量、高科技创新状态组合;HL表示高环境质量、低科技创新状态组合;LH表示低环境质量、高科技创新状态组合;LL表示低环境质量、低科技创新状态组合,下同。 | ||||||||||
北京 | HH | HH | HH | HH | HH | HH | HH | HH | HH | HH |
天津 | LL | LL | LL | LL | LL | LL | LH | LH | LH | LH |
河北 | HL | HL | HL | HL | HL | HL | HL | HL | HL | HL |
山西 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
内蒙古 | LL | LL | HL | HL | HL | HL | HL | HL | HL | HL |
辽宁 | LH | LH | LH | LH | LH | LL | LL | LL | LL | LL |
吉林 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
黑龙江 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
上海 | LH | LH | LH | LH | LH | LH | LH | LH | LH | LH |
江苏 | HH | HH | HH | HH | HH | HH | HH | HH | HH | HH |
浙江 | HH | HH | HH | HH | HH | HH | HH | HH | HH | HH |
安徽 | HL | HL | HL | HH | HH | HH | HH | HH | HH | HH |
福建 | HL | HL | HL | HL | HL | HL | HL | HL | HL | HL |
江西 | HL | HL | HL | HL | HL | HL | HL | HL | HL | HL |
山东 | HH | HH | HH | HH | HH | HH | HH | HH | HH | HH |
河南 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
湖北 | LH | LH | LH | LH | LH | LH | LH | LH | LH | LH |
湖南 | LL | LL | LL | LL | LL | LL | LL | HL | HL | HL |
广东 | HH | HH | HH | HH | HH | HH | HH | HH | HH | HH |
广西 | LL | LL | LL | HL | LL | LL | LL | LL | LL | LL |
海南 | HL | HL | HL | HL | HL | HL | LL | LL | LL | LL |
重庆 | HL | HL | HL | HL | HL | HL | HL | HL | HL | HL |
四川 | LH | LH | LH | LH | LH | LH | LH | LH | LH | LH |
贵州 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
云南 | LL | LL | LL | HL | LL | LL | LL | LL | LL | LL |
陕西 | LH | LH | HH | HH | HH | HH | HH | HH | HH | HH |
甘肃 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
青海 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
宁夏 | HL | HL | HL | HL | HL | HL | HL | HL | HL | HL |
新疆 | LL | LL | LL | LL | LL | LL | LL | LL | LL | LL |
Table 5 Upgrade paths for environmental and technological models in each region表5 各地区环境与科技模式的演化路径 |
演化模式 | 路径 | 阶段 | 地区 |
注:暂缺港澳台和西藏数据。 | |||
停滞不变型 | HH→HH | 高水平稳定 | 北京、江苏、浙江、山东、广东 |
HL→HL | 科技低水平稳定 | 河北、福建、江西、重庆、宁夏 | |
LL→LL | 低水平稳定 | 山西、吉林、黑龙江、河南、甘肃、青海、新疆、贵州 | |
LH→LH | 环境低水平稳定 | 四川、上海、湖北 | |
优先升级型 | LL→LH | 科技优先升级型 | 天津 |
LL→HL | 环境优先升级型 | 湖南、内蒙古 | |
HL→HH或LH→HH | 同步领先型 | 安徽、陕西 | |
滞后发展型 | LH→LL | 科技滞后发展型 | 辽宁 |
HL→LL | 环境滞后发展型 | 海南 | |
LL→HL→LL | 同步滞后型 | 云南、广西 |
Table 6 Regression results of simultaneous equation model表6 联立方程模型回归结果 |
变量 | 环境质量方程 | 变量 | 科技创新方程 | |
注:括号内数值为t统计量;*、**、***分别表示在10%、5%、1%的显著性水平;-表示无数据;“L.”表示变量滞后一期;EQ表示环境质量,ST表示科技水平,K表示研发资本投入,L表示研发人员投入,PR表示利润率,PD表示人口密度,UL表示城市化水平;暂缺港澳台和西藏数据。 | ||||
常数项 | 3.051***(12.640) | 常数项 | 1.081**(5.464) | |
L.lnST | -0.003(-0.048) | L.lnEQ | 0.072*(1.759) | |
L.lnPD | 0.044***(3.447) | L.lnK | 0.011(0.351) | |
L.lnUL | 0.159**(2.462) | L.lnL | 0.213***(5.797) | |
- | - | L.lnPR | -0.022(-1.045) | |
R2 | 0.156 | R2 | 0.808 |
[1] |
汪红霞, 唐星, 许佩蓉, 等. 环境补贴对区域创新能力的作用效果及影响机制——基于空间溢出的研究视角[J]. 统计学报, 2021, 2(4): 53-66.
Wang Hongxia, Tang Xing, Xu Peirong et al. Effects and influencing mechanism of environmental subsidies on regional innovation ability—Based on the perspective of spatial spillover. Journal of Statistics, 2021, 2(4): 53-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
郭爱君, 杨春林, 钟方雷. 中国区域科技创新与生态环境优化耦合协调的时空格局及驱动因素分析[J]. 科技管理研究, 2020, 40(24): 91-102.
Guo Aijun, Yang Chunlin, Zhong Fanglei. Spatial and temporal pattern and driving factor analysis of coupling and coordination between regional scientific and technological innovation and ecological environment optimization. Science and Technology Management Research, 2020, 40(24): 91-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
严翔, 成长春. 长江经济带科技创新与生态环境间的动态响应研究[J]. 南通大学学报(社会科学版), 2019, 35(5): 22-29.
Yan Xiang, Cheng Changchun. Dynamic response between technological innovation and ecological environment of the Yangtze River Economic Belt. Journal of Nantong University (Social Sciences Edition), 2019, 35(5): 22-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
但智钢, 段宁, 郭玉文, 等. 基于分解模型的全过程节能减排定量评价方法及应用[J]. 中国环境科学, 2010, 30(6): 852-857.
Dan Zhigang, Duan Ning, Guo Yuwen et al. A quantitative evaluation method based decomposition analysis and its application on the life-cycle effect of energy conservation and emission reduction. China Environmental Science, 2010, 30(6): 852-857.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
何小钢, 张耀辉. 技术进步、节能减排与发展方式转型——基于中国工业36个行业的实证考察[J]. 数量经济技术经济研究, 2012, 29(3): 19-33.
He Xiaogang, Zhang Yaohui. Technology progress, energy save and emission reduce and development pattern transformation. Journal of Quantitative & Technological Economics, 2012, 29(3): 19-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Ehrlich P R, Holdren J P. Impact of population growth[J]. Science, 1971, 171(3977): 1212-1217.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Barker T, Pan H, Warren R, et al. Decarbonizing the global economy with induced technological change: Scenarios to 2100 using E3MG[J]. Energy Journal, 2006, 27(1): 241-258.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
辛晓华, 吕拉昌. 中国主要城市技术创新影响环境污染的空间分异与机理[J]. 地理科学, 2021, 41(1): 129-139.
Xin Xiaohua, Lyu Lachang. Spatial differentiation and mechanism of technological innovation affecting environmental pollution in major Chinese cities. Scientia Geographica Sinica, 2021, 41(1): 129-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
Brannlund R, Ghalwash T, Nordstrom J. Increased energy efficiency and the rebound effect: Effects on consumption and emissions[J]. Energy Economics, 2007, 29(1): 1-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Anadon L D, Chan G, Harley A G, et al. Making technological innovation work for sustainable development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 113(35): 9682-9690.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Porter M E. Towords a dynamic theory of strategy[J]. Strategic Management Journal, 1991(12): 95-117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
Lanjouw J O, Mody A. Innovation and the international diffusion of environmentally responsive technology[J]. Research Policy, 1996(4): 549-571.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
Murty M N, Kumar S. Win-win opportunities and environmental regulation: Testing of porter hypothesis for Indian manufacturing industries[J]. Journal of Environmental Management, 2003(2): 139-144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
李阳, 党兴华, 韩先锋, 等. 环境规制对技术创新长短期影响的异质性效应——基于价值链视角的两阶段分析[J]. 科学学研究, 2014, 32(6): 937-949.
Li Yang, Dang Xinghua, Han Xianfeng et al. The study on heterogeneity effect of environmental regulation’s long-term & short-term influence on technology innovation—Two stages analysis based on value chain perspective. Studies in Science of Science, 2014, 32(6): 937-949.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
Johnstone N, Hascic I, Pop D. Renewable energy policies and technological innovation: Evidence based on the poter hypothesis[J]. Journal of Economics & Management Strategy, 2011, 20(3): 803-842.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Wagner M. On the relationship between environmental management, environmental innovation and patenting: Evidence from german manufacturing firms[J]. Research Policy, 2007, 36(10): 1587-1602.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Blind K. The influence of regulations on innovation: A quantitative assessment for OECD countries[J]. Research Policy, 2012(41): 391-400.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
Jaffe A, Palmer K. Environmental regulation and innovation a panel data study[J]. The Review of Economics and Statistics, 1997(4): 610-619.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
Grossman G, Krueger A. Economic-growth and the environment[J]. Quarterly Journal of Economics, 1995, 110(2): 353-377.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
Fussler C, James P. Driving eco-innovation: A breakthrough discipline for innovation and sustainability[M]. London: Pitman Pub, 1996: 138-147.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
黄茂兴, 林寿富. 污染损害、环境管理与经济可持续增长——基于五部门内生经济增长模型的分析[J]. 经济研究, 2013(12): 30-41.
Huang Maoxing, Lin Shoufu. Pollution damage, environmental management and sustainable economic growth—Based on the analysis of five-department endogenous growth model. Economic Research Journal, 2013(12): 30-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
朱秀梅. 高技术产业集群创新路径与机理实证研究[J]. 中国工业经济, 2008(2): 66-75.
Zhu Xiumei. An empirical analysis on innovative path and mechanism of high-tech industry cluster. China Industrial Economics, 2008(2): 66-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
国家统计局. 中国统计年鉴[M]. 2010—2019. 北京: 中国统计出版, 2010—2019.
National Bureau of Statistics of China. China statistical yearbook. 2010—2019. Beijing: China Statistics Press, 2010—2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
国家统计局. 中国人口和就业统计年鉴[M]. 2010—2019. 北京: 中国统计出版社, 2010—2019.
National Bureau of Statistics of China. China population & employment statistics yearbook. 2010—2019. Beijing: China Statistics Press, 2010—2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
国家统计局. 中国科技统计年鉴[M]. 2010—2019. 北京: 中国统计出版社, 2010—2019.
National Bureau of Statistics of China. China statistical yearbook of science and technology. 2010—2019. Beijing: China Statistics Press, 2010—2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |