SCIENTIA GEOGRAPHICA SINICA ›› 2022, Vol. 42 ›› Issue (7): 1207-1217.doi: 10.13249/j.cnki.sgs.2022.07.008
Previous Articles Next Articles
Received:
2021-08-06
Revised:
2021-12-25
Accepted:
2022-06-10
Online:
2022-07-30
Published:
2022-07-20
Supported by:
CLC Number:
Zou Weiyong, Xiong Yunjun. Spatio-temproral Evolution Characteristics of AI Development in Chinese Cities and Its Influencing Factors[J].SCIENTIA GEOGRAPHICA SINICA, 2022, 42(7): 1207-1217.
Table 2
Standard deviation ellipse parameters of urban AI development level in Chinese cities from 2000 to 2019
年份 | 重心坐标 | 长半轴/km | 短半轴/km | 方位角 | 面积/万km2 | 形状指数 |
注:数据来源ArcGIS10.5软件测算得出;不含港澳台数据。 | ||||||
2000 | (115°50′02″E,33°38′13″N) | 1068.704 | 593.967 | 53°18′11″ | 199.404 | 0.556 |
2003 | (116°41′46″E,32°14′38″N) | 1013.212 | 573.025 | 50°47′46″ | 182.385 | 0.566 |
2006 | (116°32′17″E,32°24′29″N) | 1052.124 | 610.482 | 53°09′22″ | 201.770 | 0.580 |
2009 | (116°32′10″E,32°36′25″N) | 959.351 | 611.963 | 49°58′05″ | 184.426 | 0.638 |
2012 | (116°17′02″E,32°05′31″N) | 920.173 | 635.201 | 49°16′26″ | 183.613 | 0.690 |
2016 | (115°57′00″E,32°01′19″N) | 927.347 | 628.656 | 49°20′02″ | 183.138 | 0.678 |
2019 | (115°55′05″E,31°15′29″N) | 932.435 | 602.868 | 48°47′20″ | 176.588 | 0.647 |
Table 3
The Global Moran index of the development level of AI in Chinese cities from 2000 to 2019
年份 | Moran’sI | Z值 | P值 | 年份 | Moran’s I | Z值 | P值 | |
注:不含港澳台数据。 | ||||||||
2000 | 0.071 | 3.788 | 0.000 | 2010 | 0.226 | 11.267 | 0.000 | |
2001 | 0.057 | 3.010 | 0.001 | 2011 | 0.232 | 11.569 | 0.000 | |
2002 | 0.107 | 5.499 | 0.000 | 2012 | 0.241 | 11.987 | 0.000 | |
2003 | 0.101 | 5.185 | 0.000 | 2013 | 0.249 | 12.403 | 0.000 | |
2004 | 0.138 | 7.011 | 0.000 | 2014 | 0.253 | 12.584 | 0.000 | |
2005 | 0.143 | 7.273 | 0.000 | 2015 | 0.252 | 12.533 | 0.000 | |
2006 | 0.160 | 8.106 | 0.000 | 2016 | 0.247 | 12.292 | 0.000 | |
2007 | 0.156 | 7.892 | 0.000 | 2017 | 0.260 | 12.916 | 0.000 | |
2008 | 0.196 | 9.858 | 0.000 | 2018 | 0.264 | 13.154 | 0.000 | |
2009 | 0.226 | 11.302 | 0.000 | 2019 | 0.255 | 12.718 | 0.000 |
Table 4
Estimation results of spatial Dubin model and its decomposition model
变量 | 主效应项 | 空间滞后项 | 直接效应 | 间接效应 | 总效应 |
注:括号内数值为各系数的标准误差;***、**、*分别表示1%,5%,10%水平的显著性; lnmar为市场化水平; lngov为政府干预; lnpop为人口密度;lnhum为人力资本;lnfdi为外商投资;lnfin为金融发展;lnind为产业升级;lninst为基础设施建设;SDM-SAR为SDM模型是否会退化为SAR模型的LR检验;SDM-SEM为SDM模型是否会退化为SEM模型的LR检验;Both-Ind为时空双固定模型还是空间固定模型更优的LR检验;Both-Time为时空双固定模型还是时间固定模型更优的LR检验;不含港澳台数据。 | |||||
lnmar | 0.016 | 0.394*** | 0.032* | 0.846*** | 0.878*** |
(0.018) | (0.068) | (0.019) | (0.151) | (0.153) | |
lngov | 0.247*** | 0.261 | 0.260*** | 0.806** | 1.066*** |
(0.054) | (0.189) | (0.051) | (0.374) | (0.376) | |
lngov2 | −0.097*** | −0.225*** | −0.106*** | −0.571*** | −0.677*** |
(0.012) | (0.040) | (0.011) | (0.081) | (0.079) | |
lnpop | 0.561*** | 1.398*** | 0.625*** | 3.568*** | 4.193*** |
(0.110) | (0.464) | (0.109) | (0.975) | (0.999) | |
lnhum | 0.068** | 0.837*** | 0.102*** | 1.810*** | 1.912*** |
(0.030) | (0.113) | (0.030) | (0.247) | (0.251) | |
lnfdi | 0.022 | 0.184*** | 0.029* | 0.408*** | 0.437*** |
(0.015) | (0.056) | (0.016) | (0.120) | (0.123) | |
lnfin | 0.236*** | 0.822*** | 0.269*** | 1.987*** | 2.255*** |
(0.039) | (0.148) | (0.038) | (0.314) | (0.320) | |
lnind | 0.207*** | 0.284 | 0.228*** | 0.774 | 1.002* |
(0.075) | (0.284) | (0.073) | (0.583) | (0.590) | |
lninst | 0.204*** | 0.096 | 0.210*** | 0.405 | 0.616** |
(0.043) | (0.153) | (0.041) | (0.302) | (0.304) | |
ρ | 0.526*** | ||||
sigma2_e | 0.367*** | ||||
HausmanTest | 811.020*** | ||||
SDM-SAR | 213.880*** | ||||
SDM-SEM | 339.800*** | ||||
Both-Ind | 139.370*** | ||||
Both-Time | 2655.250*** | ||||
R-squared | 0.287 | ||||
观测值 | 5700 | ||||
样本数 | 285 |
[1] | 张月友, 董启昌, 方瑾, 等. 人口素质红利时代的中国服务业增长[J]. 经济学家, 2020(3): 56-65. |
Zhang Yueyou, Dong Qichang, Fang Jin et al. Growth of China’s service industry in the era of demographic dividend. Economist, 2020(3): 56-65. | |
[2] | Turing A M, Haugeland J. Computing machinery and intelligence[M]. Cambridge, MA: MIT Press, 1950. |
[3] |
郭凯明. 人工智能发展、产业结构转型升级与劳动收入份额变动[J]. 管理世界, 2019, 35(7): 60-77.
doi: 10.3969/j.issn.1002-5502.2019.07.007 |
Guo Kaiming. Development of artificial intelligence, transformation and upgrading of industrial structure and change of labor income share. Management World, 2019, 35(7): 60-77.
doi: 10.3969/j.issn.1002-5502.2019.07.007 |
|
[4] | 孙早, 侯玉琳. 人工智能发展对产业全要素生产率的影响——一个基于中国制造业的经验研究[J]. 经济学家, 2021(1): 32-42. |
Sun Zao, Hou Yulin. The impact of the development of artificial intelligence on industrial total factor productivity — An empirical study based on China’s manufacturing industry. Economist, 2021(1): 32-42. | |
[5] | 张龙鹏, 张双志. 技术赋能: 人工智能与产业融合发展的技术创新效应[J]. 财经科学, 2020(6): 74-88. |
Zhang Longpeng, Zhang Shuangzhi. Technology empowerment: Technological innovation effect of integrated development of artificial intelligence and industry. Financial Science, 2020(6): 74-88. | |
[6] |
Raisch S, Krakowski S. Artificial intelligence and management: The automation-augmentation paradox[J]. Academy of Management Review, 2021, 46(1): 192-210.
doi: 10.5465/amr.2018.0072 |
[7] | Aghion P, Antonin C, Bunel S. Artificial intelligence, growth and employment: The role of policy[J]. Economie et Statistique, 2019, 510(1): 149-164. |
[8] |
Mellacher P, Scheuer T. Wage inequality, labor market polarization and skill-biased technological change: An evolutionary (agent-based) approach[J]. Computational Economics, 2021, 58(2): 233-278.
doi: 10.1007/s10614-020-10026-0 |
[9] |
Li L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”[J]. Technological Forecasting and Social Change, 2018, 135: 66-74.
doi: 10.1016/j.techfore.2017.05.028 |
[10] | 曹可心, 邓羽. 城市共享汽车分布的时空演变及影响因素研究——以北京市主城区为例[J]. 地理科学, 2021, 41(10): 1792-1801. |
Cao Kexin, Deng Yu. Study on temporal and spatial evolution and influencing factors of urban shared vehicles distribution: Taking the main urban area of Beijing as an example. Scientia Geographica Sinica, 2021, 41(10): 1792-1801. | |
[11] | 王娜, 吴健生, 彭子凤. 深圳市零售业空间格局及影响因素[J]. 经济地理, 2021, 283(9): 125-134. |
Wang Na, Wu Jiansheng, Peng Zifeng. Spatial pattern and influencing factors of retail industry in Shenzhen. Economic Geography, 2021, 283(9): 125-134. | |
[12] | 滕堂伟, 谌丹华, 胡森林. 黄河流域空气污染的空间格局演化及影响因素[J]. 地理科学, 2021, 41(10): 1852-1861. |
Teng Tangwei, Chen Danhua, Hu Senlin. Spatial pattern evolution and influencing factors of air pollution in the Yellow River Basin. Scientia Geographica Sinica, 2021, 41(10): 1852-1861. | |
[13] | 国家统计局. 中国城市统计年鉴[M]. 北京: 中国统计出版社, 2001-2020. |
National Bureau of Statistics. China urban statistical yearbook. Beijing: China Statistics Press, 2001-2020. | |
[14] |
Borland J, Coelli M. Are robots taking our jobs?[J]. Australian Economic Review, 2017, 50(4): 377-397.
doi: 10.1111/1467-8462.12245 |
[15] | Liu J, Chang H, Forrest J Y L et al. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China’s manufacturing sectors[J]. Technological Forecasting and Social Change, 2020, 158: 1-11. |
[16] | 孙早, 侯玉琳. 工业智能化如何重塑劳动力就业结构[J]. 中国工业经济, 2019(5): 61-79. |
Sun Zao, Hou Yulin. How industrial intelligence reshapes labor employment structure. China Industrial Economy, 2019(5): 61-79. | |
[17] | Kim J, Choi J, Park S et al. Patent keyword extraction for sustainable technology management[J]. Sustainability, 2018, 10(4): 1-18. |
[18] |
Joung J, Kim K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological Forecasting and Social Change, 2017, 114: 281-292.
doi: 10.1016/j.techfore.2016.08.020 |
[19] | 贺光烨, 吴晓刚. 市场化、经济发展与中国城市中的性别收入不平等[J]. 社会学研究, 2015, 30(1): 140-165. |
He Guangye, Wu Xiaogang. Marketization, economic development and gender income inequality in Chinese cities. Sociological Research, 2015, 30(1): 140-165. | |
[20] | 曾刚, 胡森林. 技术创新对黄河流域城市绿色发展的影响研究[J]. 地理科学, 2021, 41(8): 1314-1323. |
Zeng Gang, Hu Senlin. Study on the impact of technological innovation on urban green development in the Yellow River Basin. Scientia Geographica Sinica, 2021, 41(8): 1314-1323. | |
[21] | 刘建丽. 大变局下中国工业利用外资的态势、风险与“十四五”政策着力点[J]. 改革, 2020(10): 50-62. |
Liu Jianli. The situation and risk of China’s industrial utilization of foreign capital under the great changes and the focus of the "14th five year plan" policy. Reform, 2020(10): 50-62. | |
[22] | Levinson A. Environmental regulatory competition: A status report and some new evidence[J]. National Tax Journal, 2003, 56(1): 91-106. |
[23] | Zeng W, Li L, Huang Y. Industrial collaborative agglomeration, marketization, and green innovation: Evidence from China’s provincial panel data[J]. Journal of Cleaner Production, 2021, 279: 1-10. |
[24] |
Liu B, Zhou W, Chan K C et al. Corporate executives with financial backgrounds: The crowding-out effect on innovation investment and outcomes[J]. Journal of Business Research, 2020, 109: 161-173.
doi: 10.1016/j.jbusres.2019.11.055 |
[25] |
Lyu L, Sun F, Huang R. Innovation-based urbanization: Evidence from 270 cities at the prefecture level or above in China[J]. Journal of Geographical Sciences, 2019, 29(8): 1283-1299.
doi: 10.1007/s11442-019-1659-1 |
[26] | 钟雨齐, 王强, 崔璨, 等. 人力资本的空间迁移模式与影响因素分析——以南京市高校毕业生为例[J]. 地理科学, 2021, 41(6): 960-970. |
Zhong Yuqi, Wang Qiang, Cui Can et al. Analysis on spatial migration mode and influencing factors of human capital: Taking College Graduates in Nanjing as an example. Scientia Geographica Sinica, 2021, 41(6): 960-970. | |
[27] | 韩彩珍, 高婧怡, 金岳. 外资占比、政策冲击与企业创新: 中国的事实与解释[J]. 产业经济研究, 2020(6): 55-67. |
Han Caizhen, Gao Jingyi, Jin Yue. Proportion of foreign capital, policy impact and enterprise innovation: Facts and explanations in China. Research on Industrial Economy, 2020(6): 55-67. | |
[28] |
田秀娟, 李睿, 杨戈. 金融科技促进实体经济发展的影响——基于金融创新和科技创新双路径的实证分析[J]. 广东社会科学, 2021(5): 5-15.
doi: 10.3969/j.issn.1000-114X.2021.05.001 |
Tian Xiujuan, Li Rui, Yang Ge. The impact of financial technology on the development of real economy—An empirical analysis based on the dual path of financial innovation and scientific and technological innovation. Guangdong Social Sciences, 2021(5): 5-15.
doi: 10.3969/j.issn.1000-114X.2021.05.001 |
|
[29] |
赵庆. 产业结构优化升级能否促进技术创新效率?[J]. 科学学研究, 2018, 36(2): 239-248.
doi: 10.3969/j.issn.1003-2053.2018.02.006 |
Zhao Qing. Can the optimization and upgrading of industrial structure promote the efficiency of technological innovation?. Scientific Research, 2018, 36(2): 239-248.
doi: 10.3969/j.issn.1003-2053.2018.02.006 |
|
[30] | 盛磊, 杨白冰. 新型基础设施建设的投融资模式与路径探索[J]. 改革, 2020(5): 49-57. |
Sheng Lei, Yang Baibing. Exploration on investment and financing mode and path of new infrastructure construction. Reform, 2020(5): 49-57. |
[1] | Han Zenglin, Tong Yanbo, Wang Geng. Spatial-temporal Differentiation and Evolution Trend of Marine Ecological Security in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(7): 1166-1175. |
[2] | Xie Jia, Wang Shijin, Dou Wenkang, Zhao Canwen. The Spatio-temporal Characteristics and Evolution Law of Chinese Ski Resorts from 1989 to 2019 [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(6): 1064-1072. |
[3] | Yang Yang, Zhao Na, Yue Tianxiang. Spatio-temporal Variations of Extreme High Temperature Event in China From 1980 to 2018 [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(3): 536-547. |
[4] | Fang Yelin, Cheng Xuelan, Su Xueqing, Bao Jie. The Spatial Spillover Effect of Integration Progress on Tourism Economy: A Case Study of the Yangtze River Delta Urban Agglomeration [J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(9): 1546-1555. |
[5] | Fan Jianshuang, Zhou Lin, Yu Xiaofen. Impact of Land Finance and Land Market Development on Urban Housing Price [J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(5): 863-871. |
[6] | Guo Zheng, Yao Shimou, Wu Changyan. Spatial-temporal Pattern of Industrial Soot and Dust Emissions in China and Its Influencing Factors [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(12): 1949-1957. |
[7] | Yanling Chu, Zhiguang Gong, Zhongzhen Yang. The Spatial Pattern of China Air Cargo Transportation in 21st Century [J]. SCIENTIA GEOGRAPHICA SINICA, 2016, 36(3): 335-341. |
[8] | Kaiming Cheng, Yafei Zhang, Long Chen. Effects Decomposition and Theoretical Mechanism of Urbanization Influencing Energy Consumption in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2016, 36(11): 1661-1669. |
[9] | Xue-ting CHEN, Tao SONG, Jian-ming CAI, Le LI, Yu DENG. The Chinese Urban Metabolic Efficiencies Based on the DEA and Malmquist [J]. SCIENTIA GEOGRAPHICA SINICA, 2015, 35(4): 419-426. |
[10] | HE Shen-jing, LIU Yu-ting. Mechanism and Consequences of China’s Gentrification under Market Transition [J]. SCIENTIA GEOGRAPHICA SINICA, 2010, 30(4): 496-502. |
[11] | LIU Ji-Sheng, CHEN Yan-Guang. Multifractal Measures Based on Man-Land Relationships of the Spatial Structure of the Urban System in Henan [J]. SCIENTIA GEOGRAPHICA SINICA, 2003, 23(6): 713-720. |
|