SCIENTIA GEOGRAPHICA SINICA ›› 2022, Vol. 42 ›› Issue (11): 2028-2038.doi: 10.13249/j.cnki.sgs.2022.11.017
Previous Articles Next Articles
Fu Chun1,2(), Deng Junpeng3,4, Ouyang Huanrui5, Fu Yaozong3, Zhang Jing1
Received:
2021-07-01
Revised:
2022-03-12
Online:
2022-11-10
Published:
2023-01-05
CLC Number:
Fu Chun, Deng Junpeng, Ouyang Huanrui, Fu Yaozong, Zhang Jing. Layout and Optimization of Urban Water System Connectivity Based on the Graph Theory[J].SCIENTIA GEOGRAPHICA SINICA, 2022, 42(11): 2028-2038.
Table 1
Characterization principles and forms of water system characteristics
水系特征 | 表征原则 | 表征形式 |
水系源于研究区内,汇于研究区内 | 研究区源头创建一个节点,汇入创建一个节点 | |
水系源于研究区外,汇于研究区内 | 研究区源头创建一个节点和一条不计数的廊道,汇入创建一个节点 | |
水系源于研究区外,汇于研究区外 | 研究区源头不创建节点并创建一条不计数的廊道,汇入不创建节点并创建一条不计数的廊道 | |
城市湖泊 | 创建一个湖节点 | |
廊道方向 | 与水流方向一致 | |
廊道数字 | 从上游到下游编制 | |
节点及节点编号 | 河道的交汇点、分流点创建一个节点,同一位置节点重复创建 只记一个节点,编号按照廊道方向从小到大编制 | |
Table 2
Connectivity between the main urban area of Nanchang City and the water system on both banks of the Ganjiang River
评价项目 | 评价指标 | 单位 | 主城区 | 昌南城区 | 昌北城区 |
注:−为无此项。 | |||||
基础指标 | 节点数(N) | 个 | 85 | 48 | 40 |
廊道数(L) | 条 | 103 | 63 | 42 | |
研究区面积(A) | km2 | 865.58 | 538.35 | 327.23 | |
河长 | m | 283.21 | 188.22 | 117.35 | |
水系连通 | 水系环度(α) | − | 0.12 | 0.18 | 0.04 |
节点连接率(β) | − | 2.42 | 2.63 | 2.10 | |
网络连接度(γ) | − | 0.41 | 0.46 | 0.37 |
Table 3
Number of nodes and corridors of main water systems in Nanchang urban area in 2020
研究区域 | 水系廊道名称 | 节点数/个 | 廊道数/条 | 湖节点名称 | 连接廊道数/条 |
注:−为无此项。 | |||||
昌南城区 | 赣抚平原干渠 | 32 | 31 | 梅湖 | 5 |
抚河故道 | 4 | 3 | 象湖 | 4 | |
莲西河 | 6 | 5 | 贤士湖 | 1 | |
抚河 | 3 | 2 | 青山湖 | 4 | |
桃花河 | 2 | 1 | 艾溪湖 | 2 | |
玉带河 | 7 | 6 | 南塘湖 | 1 | |
焦头河 | 5 | 4 | 瑶湖 | 5 | |
− | − | − | 东南西北湖 | 0 | |
昌北城区 | 前湖水 | 10 | 12 | 九龙湖 | 1 |
乌沙河 | 9 | 8 | 前湖 | 4 | |
龙谭水 | 4 | 3 | 礼步湖 | 1 | |
青岚水 | 4 | 3 | 黄家湖 | 1 | |
白水河 | 4 | 3 | 碟子湖 | 1 | |
幸福河 | 3 | 2 | 孔目湖 | 1 | |
赣江 | 13 | 12 | 白水湖 | 1 | |
− | − | − | 下庄湖 | 1 |
Table 4
Classification of urban lakes in Nanchang City
研究区域 | 湖节点名称 | 中轴线长/km | 平均湖宽/km | 长宽比 | 类别 |
昌南城区 | 梅湖 | 2.50 | 0.20 | 12.50 | 条带形 |
象湖 | 3.50 | 1.00 | 3.50 | 类圆形 | |
贤士湖 | 0.20 | 0.17 | 1.18 | 类圆形 | |
青山湖 | 3.30 | 1.10 | 3.00 | 类圆形 | |
艾溪湖 | 5.10 | 1.20 | 4.25 | 条带形 | |
南塘湖 | 3.30 | 0.47 | 7.02 | 条带形 | |
瑶湖 | 11.60 | 1.40 | 8.29 | 条带形 | |
东南西北湖 | 1.08 | 0.19 | 5.68 | 条带形 | |
昌北城区 | 九龙湖 | 2.60 | 0.47 | 5.53 | 条带形 |
前湖 | 2.20 | 1.00 | 2.20 | 类圆形 | |
礼步湖 | 1.00 | 0.20 | 5.00 | 条带形 | |
黄家湖 | 2.00 | 0.43 | 4.65 | 条带形 | |
碟子湖 | 1.36 | 0.74 | 1.84 | 类圆形 | |
孔目湖 | 1.80 | 0.30 | 6.00 | 条带形 | |
白水湖 | 0.90 | 0.54 | 1.67 | 类圆形 | |
下庄湖 | 1.37 | 0.57 | 2.40 | 类圆形 |
Table 5
Import and export settings of typical lake node scenario simulation program
情景方案 | 布置形式 | 进出形式 | 条带形湖节点—南塘湖 | 类圆形湖节点—下庄湖 | |||||||
进口 | 出口 | 进口 | 出口 | ||||||||
注:−为无此项。 | |||||||||||
方案一 | 线形 | 一进一出 | 1号口,指定流量20 m3/s | − | 6号口,指定水位0 m | − | 1号口,指定流量10 m3/s | − | 3号口,指定水位0 m | − | |
方案二 | 三角形 | 两进一出 | 1号口,指定流量10 m3/s | 2号口,指定流量10 m3/s | 6号口,指定水位0 m | − | 1号口,指定流量5 m3/s | 2号口,指定流量5 m3/s | 3号口,指定水位0 m | − | |
方案三 | 倒三角形 | 一进两出 | 1号口,指定流量10 m3/s | − | 4号口,指定水位0 m | 5号口,指定水位0 m | 1号口,指定流量5 m3/s | − | 3号口,指定水位0 m | 4号口,指定水位0 m | |
方案四 | 矩形 | 两进两出 | 1号口,指定流量10 m3/s | 2号口,指定流量10 m3/s | 4号口,指定水位0 m | 5号口,指定水位0 m | 1号口,指定流量5 m3/s | 2号口,指定流量5 m3/s | 3号口,指定水位0 m | 4号口,指定水位0 m | |
方案五 | 十字形 | 两进两出 | 1号口,指定流量10 m3/s | 2号口,指定流量10 m3/s | 4号口,指定水位0 m | 5号口,指定水位0 m | 6号口,指定流量5 m3/s | 7号口,指定流量5 m3/s | 3号口,指定水位0 m | 5号口,指定水位0 m |
Table 8
Comparison before and after optimization of urban water system connectivity in Nanchang
评价指标指标 | 单位 | 主城区 | 昌南城区 | 昌北城区 | |||||
现状 | 优化 | 现状 | 优化 | 现状 | 优化 | ||||
注:−为无此项。 | |||||||||
节点数(N) | 个 | 85 | 87 | 48 | 48 | 40 | 42 | ||
廊道数(L) | 条 | 103 | 121 | 63 | 65 | 42 | 58 | ||
水系环度(α) | − | 0.12 | 0.21 | 0.18 | 0.20 | 0.04 | 0.22 | ||
节点连接率(β) | − | 2.42 | 2.78 | 2.63 | 2.71 | 2.10 | 2.76 | ||
网络连接度(γ) | − | 0.41 | 0.47 | 0.46 | 0.47 | 0.37 | 0.48 |
[1] |
夏敏, 周震, 赵海霞. 基于多指标综合的巢湖环湖区水系连通性评价[J]. 地理与地理信息科学, 2017, 33(1): 73-77
doi: 10.3969/j.issn.1672-0504.2017.01.013 |
Xia Min, Zhou Zhen, Zhao Haixia. Evaluation of water system connectivity of the district around Chaohu Lake based on comprehensive indexes. Geography and Geo-Information Science, 2017, 33(1): 73-77
doi: 10.3969/j.issn.1672-0504.2017.01.013 |
|
[2] | 杨凯. 平原河网地区水系结构特征及城市化响应研究[D]. 上海: 华东师范大学, 2006. |
Yang Kai . Stream structure characteristics and its urbanization response in dense river network plain. Shanghai: East China Normal University, 2006. | |
[3] | 王世涛. 城市化发展对南昌市水系结构与河网连通性变化及其调蓄能力的影响研究[D]. 南昌: 南昌大学, 2016. |
Wang Shitao. Study on the impact of urbanization on structure, river network connectivity and storage capacity in Nanchang. Nanchang: Nanchang University, 2016. | |
[4] |
Pascual-Hortal L, Saura S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation[J]. Landscape Ecology, 2006, 21(7): 959-967
doi: 10.1007/s10980-006-0013-z |
[5] |
Jackson C R, Pringle C M. Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes[J]. BioScience, 2010, 60(1): 37-46
doi: 10.1525/bio.2010.60.1.8 |
[6] | Stoffels R J, Rehwinkel R A, Price A E et al. Dynamics of fish dispersal during river-floodplain connectivity and its implications for community assembly[J]. Aquatic Ences, 2016, 78(2): 355-365 |
[7] |
窦明, 石亚欣, 于璐, 等. 基于图论的城市河网水系连通方案优选——以清潩河许昌段为例[J]. 水利学报, 2020, 51(6): 664-674
doi: 10.13243/j.cnki.slxb.20190848 |
Dou Ming, Shi Yaxin, Yu Lu et al. Optimization of connecting schemes for urban river networks based on graph theory. A case study of Xuchang section of Qingying River. Journal of Hydraulic Engineering, 2020, 51(6): 664-674
doi: 10.13243/j.cnki.slxb.20190848 |
|
[8] | 孟慧芳, 许有鹏, 徐光来, 等. 平原河网区河流连通性评价研究[J]. 长江流域资源与环境, 2014, 23(5): 626-631 |
Meng Huifang, Xu Youpeng, Xu Guanglai et al. Study on rivers connectivity evaluation in plain river network area. Resources and Environment in the Yangtze Basin, 2014, 23(5): 626-631 | |
[9] | 韩毅, 朴香花, 梁倩. 城市双修视角下的城市水系景观规划实践——以新乡市水系连通生态规划为例[J]. 中国园林, 2018, 34(8): 27-32. |
Han Yi, Piao Xianghua, Liang Qian . Urban water system landscape planning in the perspective of city betterment and ecological restoration—A case study of the ecological planning for water system connection in Xinxiang City [J]. Chinese Landscape Architecture, 2018, 34(8): 27-32. | |
[10] | 赵筱青, 和春兰.外来树种桉树引种的景观生态安全格局[J].生态学报,2013,33(6):1860-1871. |
Zhao Xiaoqing, He Chunlan. Landscape ecological security pattern associated with the introduction of exotic tree species Eucalyptus. Acta Ecologica Sinica, 2013, 33(6):1860-1871. | |
[11] |
黄草, 陈叶华, 李志威, 等. 洞庭湖区水系格局及连通性优化[J]. 水科学进展, 2019, 30(5): 661-672
doi: 10.14042/j.cnki.32.1309.2019.05.006 |
Huang Cao, Chen Yehua, Li Zhiwei et al. Optimization of water system pattern and connectivity in the Dongting Lake area. Advances in Water Science, 2019, 30(5): 661-672
doi: 10.14042/j.cnki.32.1309.2019.05.006 |
|
[12] |
Karim F, Kinsey-Henderson A, Wallace J et al. Modelling wetland connectivity during overbank flooding in a tropical floodplain in north Queensland, Australia[J]. Hydrological Processes, 2012, 26(18): 2710-2723
doi: 10.1002/hyp.8364 |
[13] |
徐光来, 许有鹏, 王柳艳. 基于水流阻力与图论的河网连通性评价[J]. 水科学进展, 2012, 23(6): 776-781
doi: 10.14042/j.cnki.32.1309.2012.06.002 |
Xu Guanglai, Xu Youpeng, Wang Liuyan. Evaluation of river network connectivity based on hydraulic resistance and graph theory. Advances in Water Science, 2012, 23(6): 776-781
doi: 10.14042/j.cnki.32.1309.2012.06.002 |
|
[14] |
徐慧. 城市景观水系规划模式研究——以江苏省太仓市为例[J]. 水资源保护, 2007, 22(5): 25-27+30
doi: 10.3969/j.issn.1004-6933.2007.05.007 |
Xu Hui. Landscape planning of urban water system: A case study on Taicang City. Water Resources Protection, 2007, 22(5): 25-27+30
doi: 10.3969/j.issn.1004-6933.2007.05.007 |
|
[15] |
刘昌明, 李宗礼, 王中根, 等. 河湖水系连通的关键科学问题与研究方向[J]. 地理学报, 2021, 76(3): 505-512
doi: 10.11821/dlxb202103001 |
Liu Changming, Li Zongli, Wang Zhonggen et al. Key scientific issues and research directions of the interconnected river system network. Acta Geographica Sinica, 2021, 76(3): 505-512
doi: 10.11821/dlxb202103001 |
|
[16] | 钟义鹏. 南昌市城区商业用地价格时空演变及三维可视化分析[D]. 南昌: 江西农业大学, 2021. |
Zhong Yipeng. Spatio-temporal evolution andthree-dimensional visualizationanalysis of commercial land prices in Nanchang City. Nanchang: Jiangxi Agricultural University, 2021. | |
[17] |
何振芳, 郭庆春, 赵牡丹, 等. 基于小波分析的复杂地貌区DEM自动综合研究[J]. 地理与地理信息科学, 2019, 35(4): 57-63
doi: 10.3969/j.issn.1672-0504.2019.04.009 |
He Zhenfang, Guo Qingchun, Zhao Mudan et al. Research on DEM automatic synthesis in complex geomorphic areas based on wavelet analysis. Geography and Geo-Information Science, 2019, 35(4): 57-63
doi: 10.3969/j.issn.1672-0504.2019.04.009 |
|
[18] |
张景奇, 关威, 孙萍, 等. 基于K-T变换的地表水体信息遥感自动提取模型[J]. 中国水土保持科学, 2011, 9(3): 88-92
doi: 10.3969/j.issn.1672-3007.2011.03.016 |
Zhang Jingqi, Guan Wei, Sun Ping et al. Automatic water bodies extraction model based on K-T transformation. Science of Soil and Water Conservation, 2011, 9(3): 88-92
doi: 10.3969/j.issn.1672-3007.2011.03.016 |
|
[19] | 陆丁滒, 吴虹, 郭琪, 等. 基于Google Earth影像的漓江水系形态特征提取与分析[J]. 国土资源遥感, 2016, 28(2): 161-167 |
Lu Dingge, Wu Hong, Guo Qi et al. Feature extraction and analysis of the Lijiang River water system form based on the Google Earth image. Remote Sensing for Land & Resources, 2016, 28(2): 161-167 | |
[20] | 郭伟鹏. 城市水系连通工程近邻空间规划控制要素及指标研究[D]. 武汉: 华中科技大学, 2016. |
Guo Weipeng. Study on control factors and indexes of the neighbor space of city river connectivity project. Wuhan: Huazhong University of Science and Technology, 2016. | |
[21] |
马栋, 张晶, 赵进勇, 等. 扬州市主城区水系连通性定量评价及改善措施[J]. 水资源保护, 2018, 34(5): 34-40
doi: 10.3880/j.issn.1004-6933.2018.05.06 |
Ma Dong, Zhang Jing, Zhao Jinyong et al. Quantitative evaluation and improvement measures of water connectivity in main urban area of Yangzhou. Water Resources Protection, 2018, 34(5): 34-40
doi: 10.3880/j.issn.1004-6933.2018.05.06 |
|
[22] | 马爽爽. 基于河流健康的水系格局与连通性研究[D]. 南京: 南京大学, 2013. |
Ma Shuangshuang. Study on river network pattern and connectivity of Hangzhou-Jiaxing-Huzhou Plain region based on river health. Nanjing: Nanjing University, 2013. | |
[23] |
舒长莉, 李林, 冯韬. 基于MIKE21的河道饮用水源地突发污染事故模拟——以赣江南昌段为例[J]. 人民长江, 2019, 50(3): 73-77
doi: 10.16232/j.cnki.1001-4179.2019.03.013 |
Shu Changli, Li Lin, Feng Tao. Simulation of emergent water pollution accident in river-type drinking water sources based on MIKE 21: A case of Nanchang reach of Ganjiang River. Yangtze River, 2019, 50(3): 73-77
doi: 10.16232/j.cnki.1001-4179.2019.03.013 |
|
[24] | 李华旭,杨锦琦.生态环境约束下农业全要素生产率时空变化研究——以江西为例[J].南昌大学学报(人文社会科学版),2020,51(3):81-90. |
Li Huaxu,Yang Jinqi. Study on the temporal and spatial changes of agricultural total factor productivity in Jiangxi Province under the constraints of ecological environment. Journal of Nanchang University (Humanities and Social Sciences), 2020, 51(3):81-90. |
[1] | Wang Zilin, Li Zhigang, Fang Shiming. Construction and Optimization of Ecological Security Pattern Based on Genetic Algorithm and Graph Theory: A Case Study of Wuhan City [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(10): 1685-1694. |
[2] | Tiangui Lyu, Cifang Wu, Hongyi Li, Heyuan You, Xiao Cai. The Coordination and Its Optimization About Population and Land of Urbanization: A Case Study of Nanchang City [J]. SCIENTIA GEOGRAPHICA SINICA, 2016, 36(2): 239-246. |
[3] | ZENG Hui, CHU Yan-Ling, LI Shu-Juan. Construction and Utility of a General-conversion Probability Model for Simulation of Built-up area Spatial Expanding in Nanchang City of China [J]. SCIENTIA GEOGRAPHICA SINICA, 2007, 27(4): 473-479. |
|