SCIENTIA GEOGRAPHICA SINICA ›› 2023, Vol. 43 ›› Issue (3): 398-410.doi: 10.13249/j.cnki.sgs.2023.03.003
Previous Articles Next Articles
Li Lanhui1,2(), Huang Congcong1, Zhang Yili2(
), Liu Linshan2, Wang Zhaofeng2, Zhang Haiyan2, Ding Mingjun3, Zhang Huamin3
Received:
2022-06-20
Revised:
2022-08-20
Online:
2023-03-30
Published:
2023-03-20
Supported by:
CLC Number:
Li Lanhui, Huang Congcong, Zhang Yili, Liu Linshan, Wang Zhaofeng, Zhang Haiyan, Ding Mingjun, Zhang Huamin. Mapping the multi-temporal grazing intensity on the Qinghai-Tibet Plateau using geographically weighted random forest[J].SCIENTIA GEOGRAPHICA SINICA, 2023, 43(3): 398-410.
Table 1
Summary of the datasets in this study
数据名称 | 时间粒度(年份) | 数据类型/分辨率 | 来源/参考文献 |
注:区县、地级市和自治州牲畜年末存栏统计数据来源于《西藏统计年鉴》和《青海统计年鉴》( | |||
县级牲畜年末存栏量 | 2000,2010,2020 | Excel | 统计数据 |
乡镇牲畜年末存栏量(部分) | 2010 | Excel | 统计数据 |
地表覆盖类型 | 2000,2010,2020 | 1 000 m | Liu等[ |
夜间灯光指数 | 2000,2010,2020 | 15 arcsec (~500 m) | Chen等[ |
人口密度 | 2000,2010,2020 | 1 000 m | Li等[ |
到居民点距离 | 2000,2012,2016 | 1 000 m | Li等[ |
居民点密度 | 2000,2012,2016 | 1 000 m | Li等[ |
到道路的距离 | 2000,2012,2016 | 1 000 m | Li等[ |
河流 | – | 矢量 | 资源环境科学与数据中心 |
保护区 | – | 矢量 | 资源环境科学与数据中心 |
行政区划 | – | 矢量 | 资源环境科学与数据中心 |
DEM | – | 1 000 m | 资源环境科学与数据中心 |
生长季NDVI均值 | 2000—2016 | 1 000 m | 资源环境科学与数据中心 |
年平均气温均值 | 2000—2016 | 0.1° | He等[ |
年降水量均值 | 2000—2016 | 0.1° | He等[ |
GLW2牲畜密度 | 2001 | ~1 000 m | Robinson等[ |
GLW3牲畜密度 | 2001 | ~10 000 m | Gilbert等[ |
[1] | Scurlock J M O, Hall D O. The global carbon sink: A grassland perspective[J]. Global Change Biology, 2002, 4(2): 229-233. |
[2] | Bardgett R D, Bullock J M, Lavorel S et al. Combatting global grassland degradation[J]. Nature Reviews: Earth & Environment, 2021, 2(10): 720-735. |
[3] |
文雯, 周丁扬, 李广泳, 等. 基于牧民放牧行为的青海湖流域放牧路线研究——以刚察县为例[J]. 干旱区资源与环境, 2016, 30(7): 95-100.
doi: 10.13448/j.cnki.jalre.2016.222 |
Wen Wen, Zhou Dingyang, Li Guangyong et al. The research on grazing routes in Qinghai Lake watershed based on the grazing behavior of herdsmen—A case of Gangcha County. Journal of Arid Land Resources and Environment, 2016, 30(7): 95-100.
doi: 10.13448/j.cnki.jalre.2016.222 |
|
[4] | Hankerson B R, Schierhorn F, Prishchepov A V et al. Modeling the spatial distribution of grazing intensity in Kazakhstan[J]. PLOS ONE, 2019, 14(1): e210051 |
[5] |
胡晓阳, 王兆锋, 张镱锂, 等. 青藏高原放牧强度空间化方法与应用[J]. 地理学报, 2022, 77(3): 547-558.
doi: 10.11821/dlxb202203004 |
Hu Xiaoyang, Wang Zhaofeng, Zhang Yili et al. Spatialization method of grazing intensity and its application in Tibetan Plateau. Acta Geographica Sinica, 2022, 77(3): 547-558.
doi: 10.11821/dlxb202203004 |
|
[6] |
Dara A, Baumann M, Freitag M et al. Annual landsat time series reveal post-Soviet changes in grazing pressure[J]. Remote Sensing of Environment, 2020, 239: 111667.
doi: 10.1016/j.rse.2020.111667 |
[7] |
Hilker T, Natsagdorj E, Waring R H et al. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing[J]. Global Change Biology, 2014, 20(2): 418-428.
doi: 10.1111/gcb.12365 |
[8] | 李文龙, 薛中正, 郭述茂, 等. 基于3S技术的玛曲县草地植被覆盖度变化及其驱动力[J]. 兰州大学学报(自然科学版), 2010, 46(1): 85-90,95. |
Li Wenlong, Xue Zhongzheng, Guo Sumao et al. Vegetation coverage changes and analysis of the driving forces in Maqu county based on 3S technology. Journal of Lanzhou University (Natural Science), 2010, 46(1): 85-90,95. | |
[9] |
Li X, Hou J, Huang C. High-resolution gridded livestock projection for Western China based on machine learning[J]. Remote Sensing, 2021, 13(24): 5038.
doi: 10.3390/rs13245038 |
[10] | Robinson T P, Franceschini G, Wint W. The food and agriculture organization's gridded livestock of the world[J]. Veterinaria Italiana, 2007, 43(3): 745 |
[11] |
Gilbert M, Nicolas G, Cinardi G et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010[J]. Scientific Data, 2018, 5: 180227.
doi: 10.1038/sdata.2018.227 |
[12] |
Robinson T P, Wint G R W, Conchedda G et al. Mapping the global distribution of livestock[J]. PLOS ONE, 2014, 9(5): e96084.
doi: 10.1371/journal.pone.0096084 |
[13] |
Sun Y, Liu S, Liu Y et al. Grazing intensity and human activity intensity data sets on the Qinghai-Tibetan Plateau during 1990–2015[J]. Geoscience Data Journal, 2022, 9(1): 140-153.
doi: 10.1002/gdj3.127 |
[14] |
Zhu Z, Zhang X, Dong H et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China[J]. Nature Food, 2022, 3(2): 161-168.
doi: 10.1038/s43016-022-00462-6 |
[15] |
Georganos S, Grippa T, Niang Gadiaga A et al. Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling[J]. Geocarto International, 2021, 36(2): 121-136.
doi: 10.1080/10106049.2019.1595177 |
[16] |
Khan S N, Li D, Maimaitijiang M. A geographically weighted random forest approach to predict corn yield in the US Corn Belt[J]. Remote Sensing, 2022, 14(12): 2843.
doi: 10.3390/rs14122843 |
[17] |
Alampi Sottini V, Barbierato E, Capecchi I et al. Assessing the perception of urban visual quality: An approach integrating big data and geostatistical techniques[J]. Aestimum, 2022, 79: 75-102.
doi: 10.36253/aestim-12093 |
[18] | Grekousis G, Feng Z, Marakakis I et al. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach[J]. Health & Place, 2022, 74: 102744 |
[19] |
Luo Y, Yan J, Mcclure S. Distribution of the environmental and socioeconomic risk factors on COVID-19 death rate across continental USA: A spatial nonlinear analysis[J]. Environmental Science and Pollution Research, 2021, 28(6): 6587-6599.
doi: 10.1007/s11356-020-10962-2 |
[20] |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1): 3-12.
doi: 10.11821/xb201201001 |
Sun Honglie, Zheng Du, Yao Tandong et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 2012, 67(1): 3-12.
doi: 10.11821/xb201201001 |
|
[21] | 贺有龙, 周华坤, 赵新全, 等. 青藏高原高寒草地的退化及其恢复[J]. 草业与畜牧, 2008(11): 1-9. |
He Youlong, Zhou Huakun, Zhao Xinquan et al. Alpine grassland degradation and its restoration on Qinghai-Tibet Plateau. Prataculture & Animal Husbandry, 2008(11): 1-9. | |
[22] | 吴雪, 刘峰贵, 刘林山, 等. 青藏高原牲畜数量变化及其空间特征[J]. 生态科学, 2021, 40(6): 38-47. |
Wu Xue, Liu Fenggui, Liu Linshan et al. Changes and spatial characteristics of livestock population in Tibetan Plateau. Ecological Science, 2021, 40(6): 38-47. | |
[23] | Chen B, Zhang X, Tao J et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189–190: 11-18. |
[24] | Zhang L, Fan J, Zhou D et al. Ecological protection and restoration program reduced grazing pressure in the Three-River Headwaters Region, China[J]. Rangeland Ecology & Management, 2017, 70(5): 540-548. |
[25] | 王小青. 2000-2018年青藏高原放牧活动时空变化及草畜平衡分析[D]. 西安: 长安大学, 2021: 72. |
Wang Xiaoqing. Analysis on the temporal and spatial changes of grazing activities and the balance between forage and livestock in the Qinghai-Tibet Plateau from 2000 to 2018. Xi'an: Chang'an University, 2021: 72. | |
[26] |
Li S, Zhang Y, Wang Z et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions[J]. Ecosystem Services, 2018, 30: 276-286.
doi: 10.1016/j.ecoser.2017.10.003 |
[27] | Wei Y, Lu H, Wang J et al. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015[J]. Earth's Future, 2022, 10(5): e2021E-e2566E. |
[28] | 张文强, 罗格平, 郑宏伟, 等. 基于随机森林模型的内陆干旱区植被指数变化与驱动力分析: 以北天山北坡中段为例[J]. 植物生态学报, 2021, 44(11): 1-14. |
Zhang Wenqiang, Luo Geping, Zheng Hongwei et al. Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: A case study of the middle part of northern slope of the north Tianshan Mountains. Chinese Journal of Plant Ecology, 2021, 44(11): 1-14. | |
[29] |
Han Q, Luo G, Li C et al. Simulated grazing effects on carbon emission in Central Asia[J]. Agricultural and Forest Meteorology, 2016, 216: 203-214.
doi: 10.1016/j.agrformet.2015.10.007 |
[30] | 段群滔, 罗立辉. 1990—2015年青藏高原人类足迹数据集[J]. 中国科学数据(中英文网络版), 2020, 5(3): 303-312. |
Duan Quntao, Luo Lihui. A dataset of human footprint over the Qinghai-Tibet Plateau during 1990—2015. China Scientific Data, 2020, 5(3): 303-312. | |
[31] |
Liu J, Kuang W, Zhang Z et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 2014, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[32] |
Zhang X, Liu L, Chen X et al. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753-2776.
doi: 10.5194/essd-13-2753-2021 |
[33] |
Chen Z, Yu B, Yang C et al. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 2021, 13(3): 889-906.
doi: 10.5194/essd-13-889-2021 |
[34] |
Li L, Zhang Y, Liu L et al. Mapping changing population distribution on the Qinghai-Tibet Plateau since 2000 with multi-temporal remote sensing and point-of-interest data[J]. Remote Sensing, 2020, 12(24): 4059.
doi: 10.3390/rs12244059 |
[35] |
He J, Yang K, Tang W et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 1-11.
doi: 10.1038/s41597-019-0340-y |
[36] | 李青丰, 乌云其木格. 草畜平衡管理系列研究(6)——家畜数量动态变化[J]. 草业科学, 2012, 29(6): 997-1001. |
Li Qingfeng, Wu Yunqi, Mu Ge. Animal demanding-feed availability balance control series(6)—Animal number monthly change. Pratacultural Science, 2012, 29(6): 997-1001. | |
[37] | Nicolas G, Robinson T P, Wint G R W et al. Using random forest to improve the downscaling of global livestock census data[J]. PLOS ONE, 2016, 11(3): e150424 |
[38] |
Leyk S, Gaughan A E, Adamo S B et al. The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use[J]. Earth System Science Data, 2019, 11(3): 1385-1409.
doi: 10.5194/essd-11-1385-2019 |
[39] | Breiman L. Random forests[J]. Machine Learning, 2001(4545): 1-5. |
[40] |
Gromping U. Variable importance assessment in regression: linear regression versus random forest[J]. The American Statistician, 2009, 63(4): 308-319.
doi: 10.1198/tast.2009.08199 |
[41] | Fotheringham A S, Brunsdon C, Charlton M. Geographically weighted regression: The analysis of spatially varying relationships[M].Hoboken: Wiley, 2002. |
[42] | Georganos S, Kalogirou S. Package 'Spatialml'[DB/OL]. 2019. https://mran.microsoft.com/snapshot/2020-04-25/web/pack-ages/SpatialML/index.html |
[43] |
Ye T, Zhao N, Yang X et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model[J]. Science of The Total Environment, 2019, 658: 936-946.
doi: 10.1016/j.scitotenv.2018.12.276 |
[44] |
Reed F, Gaughan A, Stevens F et al. Gridded population maps informed by different built settlement products[J]. Data, 2018, 3(3): 33.
doi: 10.3390/data3030033 |
[45] |
林珲, 张鸿生, 林殷怡, 等. 基于城市不透水面–人口关联的粤港澳大湾区人口密度时空分异规律与特征[J]. 地理科学进展, 2018, 37(12): 1644-1652.
doi: 10.18306/dlkxjz.2018.12.006 |
Lin Hun, Zhang Hongsheng, Lin Yinyi et al. Spatiotemporal changes of gridded urban population in the Guangdong-Hong Kong-Macao Greater Bay Area based on impervious surface-population correlation. Progress in Geography, 2018, 37(12): 1644-1652.
doi: 10.18306/dlkxjz.2018.12.006 |
|
[46] |
Tan M, Li X, Li S et al. Modeling population density based on nighttime light images and land use data in China[J]. Applied Geography, 2018, 90: 239-247.
doi: 10.1016/j.apgeog.2017.12.012 |
[47] |
Zhuang H, Liu X, Yan Y et al. Mapping multi-temporal population distribution in China from 1985 to 2010 using Landsat images via deep learning[J]. Remote Sensing, 2021, 13(17): 3533.
doi: 10.3390/rs13173533 |
[48] |
Wu S, Wang Z, Du Z et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships[J]. International Journal of Geographical Information Science, 2021, 35(3): 582-608.
doi: 10.1080/13658816.2020.1775836 |
[1] | An Yue, Tan Xuelan, Li Yinqi, Zhou Zhou, Yu Hangling, Ren Hui. Spatio-temporal Evolution Characteristics and Influencing Factors of Cultivated Land Functions in the Dongting Lake Aera [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(7): 1272-1282. |
[2] | Yanzai Wang, Dawei Liu. Spatial and Temporal Changes of Total Factor Productivity in Agriculture of Chongqing Under Constraints of Climatic Factors [J]. SCIENTIA GEOGRAPHICA SINICA, 2017, 37(12): 1942-1952. |
[3] | BU Feng-xian. Research on the Space-time Distribution of Agricultural Natural Disaster in Zhou, Qin, Western and Eastern Han Dynasties [J]. SCIENTIA GEOGRAPHICA SINICA, 2002, 22(4): 463-467. |
|