SCIENTIA GEOGRAPHICA SINICA ›› 2023, Vol. 43 ›› Issue (8): 1442-1450.doi: 10.13249/j.cnki.sgs.2023.08.013
Previous Articles Next Articles
Xu Ziyue1,2(), Ma Kai1,2, Yuan Xu1,2, He Daming1,2,*(
), Su Yan1,2
Received:
2022-03-10
Revised:
2022-06-21
Online:
2023-08-20
Published:
2023-08-30
Contact:
He Daming
E-mail:gabyxu36@163.com;dmhe@ynu.edu.cn
Supported by:
CLC Number:
Xu Ziyue, Ma Kai, Yuan Xu, He Daming, Su Yan. Progress and prospect of water-energy-food nexus in the transboundary river basins[J].SCIENTIA GEOGRAPHICA SINICA, 2023, 43(8): 1442-1450.
Table 1
Methodology of water-food-energy nexus in the transboundary river basins
研究方法 | 方法类型 | 解决的问题 | 主要应用的流域 | 文献来源 |
系统动力学模型 | 仿真模型 | 定量分析水-能源-粮食关联关系的动态演变,揭示水资源利用价值对不同管理方案的反馈 | 青尼罗河 | [ |
贝叶斯网络 | 概率图模型 | 模拟关联关系的强弱与不确定性,提升对复杂水资源系统演变过程中关联关系变化的认知 | 锡尔河 | [ |
基于主体的耦合模型 | 集成模型 | 揭示自然界供水系统(降雨、河流径流)和人类用水部门之间的互馈关系 | 澜沧江-湄公河、尼日尔河 | [ |
NEST | 集成模型 | 模拟水、能源及土地资源系统应对未来经济发展和气候变化的脆弱性 | 印度河 | [ |
DSS | 集成模型 | 评估水-能源-粮食-环境关联关系,对流域可预见的决策方案进行模拟优化 | 梅克鲁河 | [ |
水文经济模型 | 集成模型 | 量化关联关系系统指标的经济效益,模拟变化环境下资源效益变化特征 | 喜马拉雅河、青尼罗河、塞内加尔河 | [ |
社会水文模型 | 集成模型 | 揭示气候变化、工程调度和政治权重变化、补偿机制等对跨境合作演化的影响规律 | 澜沧江-湄公河 | [ |
[1] |
Mccracken M, Wolf A T. Updating the register of international river basins of the world[J]. International Journal of Water Resources Development, 2019, 35(5): 732-782.
doi: 10.1080/07900627.2019.1572497 |
[2] |
何大明, 刘昌明, 冯彦, 等. 中国国际河流研究进展及展望[J]. 地理学报, 2014, 69(9): 1284-1294.
doi: 10.11821/dlxb201409004 |
He Daming, Liu Changming, Feng Yan et al. Progress and perspective of international river researches in China. Acta Geographica Sinica, 2014, 69(9): 1284-1294.
doi: 10.11821/dlxb201409004 |
|
[3] | 李芳, 吴凤平, 陈柳鑫, 等. 基于加权破产博弈模型的跨境流域水资源分配研究[J]. 地理科学, 2021, 41(4): 728-736. |
Li Fang, Wu Fengping, Chen Liuxin et al. Transboundary river water resource allocation based on weighted bankruptcy game model. Scientia Geographica Sinica, 2021, 41(4): 728-736. | |
[4] |
王涛, 刘承良, 杜德斌. 1948—2018年国际河流跨境水冲突的时空演化规律[J]. 地理学报, 2021, 76(7): 1792-1809.
doi: 10.11821/dlxb202107016 |
Wang Tao, Liu Chengliang, Du Debin. Spatio-temporal dynamics of international freshwater conflict events and relations from 1948 to 2018. Acta Geographica Sinica, 2021, 76(7): 1792-1809.
doi: 10.11821/dlxb202107016 |
|
[5] | 周婷, 郑航. 科罗拉多河水权分配历程及其启示[J]. 水科学进展, 2015, 26(6): 893-901. |
Zhou Ting, Zheng Hang. Review of water rights allocation in Colorado River and its enlightenment. Advances in Water Science, 2015, 26(6): 893-901. | |
[6] | 何大明, 刘恒, 冯彦, 等. 全球变化下跨境水资源理论与方法研究展望[J]. 水科学进展, 2016, 27(6): 928-934. |
He Daming, Liu Heng, Feng Yan et al. Perspective on theories and methods study of transboundary water resources under the global change. Advances in Water Science, 2016, 27(6): 928-934. | |
[7] |
Salmoral G, Schaap N, Walschebauer J et al. Water diplomacy and nexus governance in a transboundary context: In the search for complementarities[J]. Science of the Total Environment, 2019, 690: 85-96.
doi: 10.1016/j.scitotenv.2019.06.513 |
[8] |
林志慧, 刘宪锋, 陈瑛, 等. 水-粮食-能源关联关系研究进展与展望[J]. 地理学报, 2021, 76(7): 1591-1604.
doi: 10.11821/dlxb202107002 |
Lin Zhihui, Liu Xianfeng, Chen Ying et al. Water-food-energy nexus: Progress, challenges and prospect. Acta Geographica Sinica, 2021, 76(7): 1591-1604.
doi: 10.11821/dlxb202107002 |
|
[9] | Chen J F, Ding T H, Wang H M et al. Research on total factor productivity and influential factors of the regional water-energy-food: A case study on Inner Mongolia, China[J]. International Journal of Environment Research and Public Health, 2019, 16(17): 1-21. |
[10] | Hoff H. Understanding the nexus-background paper for the Bonn 2011 Conference: The water, energy and food security nexus[R]. Stockholm: Stockholm Environment Institute, 2011. |
[11] | 丁童慧, 陈军飞. 水-能源-粮食纽带关系研究综述及前景展望[J]. 资源与产业, 2022, 24(2): 19-29. |
Ding Tonghui, Chen Junfei. Review and prospect of researches on water-energy-food nexus. Resources & Industries, 2022, 24(2): 19-29. | |
[12] |
Gulati M, Jacobs I, Jooste A et al. The water-energy-food security nexus: Challenges and opportunities for food security in South Africa[J]. Aquatic Procedia, 2013, 1: 150-164.
doi: 10.1016/j.aqpro.2013.07.013 |
[13] |
Endo A, Tsurita I, Burnett K et al. A review of the current state of research on the water, energy, and food nexus[J]. Journal of Hydrology: Regional Studies, 2017, 11: 20-30.
doi: 10.1016/j.ejrh.2015.11.010 |
[14] | 匡洋, 李浩, 夏军, 等. 气候变化对跨境水资源影响的适应性评估与管理框架[J]. 气候变化研究进展, 2018, 14(1): 67-76. |
Kuang Yang, Li Hao, Xia Jun et al. Impacts of climate change on transboundary water resources and adaptation management framework. Climate Change Research, 2018, 14(1): 67-76. | |
[15] | 杨珍华. 中印跨界水资源开发利用法律问题研究[D].武汉: 武汉大学, 2014. |
Yang Zhenhua. The research on legal issues of development and utilization of transboudary water resources in Sino-China. Wuhan:Wuhan University, 2014. | |
[16] | 李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457-464. |
Li Fengping, Zhang Guangxin, Dong Liqin. Studies for impact of climate change on hydrology and water resources. Scientia Geographica Sinica, 2013, 33(4): 457-464. | |
[17] |
Milly P C D, Dunne K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005, 438(7066): 347-350.
doi: 10.1038/nature04312 |
[18] |
Digna R F, Mohamed Y A, van der Zaag P et al. Impact of water resources development on water availability for hydropower production and irrigated agriculture of the Eastern Nile Basin[J]. Journal of Water Resources Planning and Management, 2018, 144(5): 05018007
doi: 10.1061/(ASCE)WR.1943-5452.0000912 |
[19] | Li R. Transboundary water conflicts in the Nile Basin[J]. Water Encyclopedia, 2005, 2: 590-594. |
[20] | 李芳, 吴凤平, 陈柳鑫, 等. 非对称性视角下跨境水资源冲突与合作的鹰鸽博弈模型[J]. 中国人口·资源与环境, 2020, 30(5): 157-166. |
Li Fang, Wu Fengping, Chen Liuxin et al. Hawk-dove game model of transboundary water resources conflict and cooperation from an asymmetric perspective. China Population Resources and Environment, 2020, 30(5): 157-166. | |
[21] | 纪道斌, 龙良红, 徐慧, 等. 梯级水库建设对水环境的累积影响研究进展[J]. 水利水电科技进展, 2017, 37(3): 7-14. |
Ji Daobin, Long Lianghong, Xu Hui et al. Advances in study on cumulative effects of construction of cascaded reservoirs on water environment. Advances in Science and Technology of Water Resources, 2017, 37(3): 7-14. | |
[22] |
Salman S M A. Downstream riparians can also harm upstream riparians: The concept of foreclosure of future uses[J]. Water International, 2010, 35(4): 350-364.
doi: 10.1080/02508060.2010.508160 |
[23] |
Zeitoun M, Warner J. Hydro-hegemony: A framework for analysis of trans-boundary water conflicts[J]. Water Policy, 2006, 8(5): 435-460.
doi: 10.2166/wp.2006.054 |
[24] |
De Strasser L, Lipponen A, Howells M et al. A methodology to assess the water energy food ecosystems nexus in transboundary river basins[J]. Water, 2016, 8(2): 59
doi: 10.3390/w8020059 |
[25] |
Wang W, Lu H, Leung L R et al. Dam construction in Lancang-Mekong River basin could mitigate future flood risk from warming-induced intensified rainfall[J]. Geophysical Research Letters, 2017, 44(20): 10378-10386.
doi: 10.1002/2017GL075037 |
[26] |
Basheer M, Elagib N A. Temporal analysis of water-energy nexus indicators for hydropower generation and water pumping in the Lower Blue Nile Basin[J]. Journal of Hydrology, 2019, 578: 124085
doi: 10.1016/j.jhydrol.2019.124085 |
[27] | Ahmed A M M. Effects of seasonal variation on fish catching in Jebel Aulia reservoir on the White Nile, Sudan[J]. International Journal of Fisheries and Aquaculture, 2017, 7(1): 15-22. |
[28] | Huang F, Xia Z, Guo L et al. Effects of reservoirs on seasonal discharge of Irtysh River measured by Lepage test[J]. Water Science and Engineering, 2014, 7(4): 363-372. |
[29] |
Zhai H, Cui B, Hu B et al. Prediction of river ecological integrity after cascade hydropower dam construction on the mainstream of rivers in Longitudinal Range-Gorge Region (LRGR), China[J]. Ecological Engineering, 2010, 36(4): 361-372.
doi: 10.1016/j.ecoleng.2009.10.002 |
[30] | 钟勇. 基于互惠合作的跨界河流开发利用博弈模型研究[D]. 北京: 清华大学, 2016. |
Zhong Yong. Study on game theory of reciprocity cooperation of transboundary rivers. Beijing: Tsinghua University, 2016. | |
[31] | Davis N. Global risks 2011 report (6th edition)[R]. Cologne: World Economic Forum, 2011. |
[32] |
Keskinen M, Someth P, Salmivaara A et al. Water-energy-food nexus in a transboundary river basin: The case of Tonle Sap Lake, Mekong River Basin[J]. Water, 2015, 7(10): 5416-5436.
doi: 10.3390/w7105416 |
[33] |
Al-Saidi M, Hefny A. Institutional arrangements for beneficial regional cooperation on water, energy and food priority issues in the Eastern Nile Basin[J]. Journal of Hydrology, 2018, 562: 821-831.
doi: 10.1016/j.jhydrol.2018.05.009 |
[34] |
Zhang J, Yang Y C E, Li H et al. Examining the food-energy-water-environment nexus in transboundary river basins through a human dimension lens: Columbia River Basin[J]. Journal of Water Resources Planning and Management, 2021, 147(10): 05021019
doi: 10.1061/(ASCE)WR.1943-5452.0001461 |
[35] |
施海洋, 罗格平, 郑宏伟, 等. 基于“水-能源-食物-生态”关联因果关系和贝叶斯网络的锡尔河流域用水分析[J]. 地理学报, 2020, 75(5): 1036-1052.
doi: 10.11821/dlxb202005011 |
Shi Haiyang, Luo Geping, Zheng Hongwei et al. Water use analysis of Syr Darya River Basin: Based on "Water-Energy-Food-Ecology" nexus and Bayesian network. Acta Geographica Sinica, 2020, 75(5): 1036-1052.
doi: 10.11821/dlxb202005011 |
|
[36] | Jalilov S-M, Varis O, Keskinen M. Sharing benefits in transboundary rivers: An experimental case study of Central Asian water-energy-agriculture nexus[J]. Water, 2015, 7(9): 4778-4805. |
[37] |
Ziv G, Baran E, Nam S et al. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin[J]. Proceedings of the National Academy of Sciences, 2012, 109(15): 5609-5614.
doi: 10.1073/pnas.1201423109 |
[38] | Shi H, Luo G, Zheng H et al. Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River Basin[J]. Journal of Hydrology, 2019, 581: 124387 |
[39] | Khan H F, Yang Y, Hua X et al. A coupled modeling framework for sustainable watershed management in transboundary river basins[J]. Hydrology and Earth System Sciences Discussions, 2017, 21(12): 1-28. |
[40] |
Tilmant A, Pina J, Salman M et al. Probabilistic trade-off assessment between competing and vulnerable water users—The case of the Senegal River Basin[J]. Journal of Hydrology, 2020, 587: 124915
doi: 10.1016/j.jhydrol.2020.124915 |
[41] |
Elsayed H, Djordjević S, Savić D A et al. The Nile water-food-energy nexus under uncertainty: Impacts of the Grand Ethiopian Renaissance Dam[J]. Journal of Water Resources Planning and Management, 2020, 146(11): 04020085
doi: 10.1061/(ASCE)WR.1943-5452.0001285 |
[42] |
Yang J, Yang Y-C E, Khan H F et al. Quantifying the sustainability of water availability for the water-food-energy-ecosystem nexus in the Niger River Basin[J]. Earths Future, 2018, 6(9): 1292-1310.
doi: 10.1029/2018EF000923 |
[43] |
Yang Y-C E, Wi S, Ray P A et al. The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories[J]. Global Environmental Change, 2016, 37: 16-30.
doi: 10.1016/j.gloenvcha.2016.01.002 |
[44] | United Nations Educational, Scientific and Cultural Organization. The United Nations world water development report 2021: Valuing water[R]. New York: United Nations, 2021. |
[45] | 刘艳丽, 赵志轩, 孙周亮, 等. 基于水利益共享的跨境流域水资源多目标分配研究——以澜沧江-湄公河为例[J]. 地理科学, 2019, 39(3): 387-393. |
Liu Yanli, Zhao Zhixuan, Sun Zhouliang et al. Multi-objective water resources allocation in trans-boundary rivers based on the concept of water benefit-sharing: A case in the Lancang-Mekong River. Scientia Geographica Sinica, 2019, 39(3): 387-393. | |
[46] | 蔡方园, 何艳虎, 陈晓宏. 澜沧江流域枯水年发电效益与下游生态-出境水互馈博弈研究[J]. 水利学报, 2020, 51(5): 536-544. |
Cai Fangyuan, He Yanhu, Chen Xiaohong. Game study of Lancang River Basin's power generation benefit and downstream ecological water-outbound water in the dry years. Journal of Hydraulic Engineering, 2020, 51(5): 536-544. | |
[47] |
Arjoon D, Tilmant A, Herrmann M. Sharing water and benefits in transboundary river basins[J]. Hydrology and Earth System Sciences, 2016, 20(6): 2135-2150.
doi: 10.5194/hess-20-2135-2016 |
[48] |
康立芸, 孙周亮, 刘艳丽, 等. 水利益共享理论及其应用概述[J]. 人民黄河, 2021, 43(1): 77-81.
doi: 10.3969/j.issn.1000-1379.2021.01.015 |
Kang Liyun, Sun Zhouliang, Liu Yanli et al. Overview of water benefit sharing theory and its application. Yellow River, 2021, 43(1): 77-81.
doi: 10.3969/j.issn.1000-1379.2021.01.015 |
|
[49] |
Matthews N, Motta S. Chinese state-owned enterprise investment in Mekong hydropower: Political and economic drivers and their implications across the water, energy, food nexus[J]. Water, 2015, 7(11): 6269-6284.
doi: 10.3390/w7116269 |
[50] | Filho F A S, Lall U, Porto R L L. Role of price and enforcement in water allocation: Insights from game theory[J]. Water Resources Research, 2008, 44(12): W12420 |
[51] |
Read L, Madani K, Inanloo B. Optimality versus stability in water resource allocation[J]. Journal of Environmental Management, 2014, 133: 343-354.
doi: 10.1016/j.jenvman.2013.11.045 |
[52] |
Eleftheriadou E, Mylopoulos Y. Game theoretical approach to conflict resolution in transboundary water resources management[J]. Journal of Water Resources Planning and Management, 2008, 134(5): 466-473.
doi: 10.1061/(ASCE)0733-9496(2008)134:5(466) |
[53] |
Yu Y, Zhao J, Li D et al. Effects of hydrologic conditions and reservoir operation on transboundary cooperation in the Lancang-Mekong River Basin[J]. Journal of Water Resources Planning and Management, 2019, 145(6): 04019020
doi: 10.1061/(ASCE)WR.1943-5452.0001075 |
[54] |
Tan C C, Erfani T, Erfani R. Water for energy and food: A system modelling approach for Blue Nile River Basin[J]. Environments, 2017, 4(1): 15
doi: 10.3390/environments4010015 |
[55] |
Vinca A, Parkinson S, Byers E et al. The NExus Solutions Tool (NEST) v1. 0: An open platform for optimizing multi-scale energy-water-land system transformations[J]. Geoscientific Model Development, 2020, 13(3): 1095-1121.
doi: 10.5194/gmd-13-1095-2020 |
[56] |
Udias A, Pastori M, Dondeynaz C et al. A decision support tool to enhance agricultural growth in the Mekrou river basin (West Africa)[J]. Computers and Electronics in Agriculture, 2018, 154: 467-481.
doi: 10.1016/j.compag.2018.09.037 |
[57] |
Amjath-Babu T S, Sharma B, Brouwer R et al. Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan River Basin[J]. Applied Energy, 2019, 239: 494-503.
doi: 10.1016/j.apenergy.2019.01.147 |
[58] |
Basheer M, Wheeler K G, Ribbe L et al. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the water-energy-food nexus: The Blue Nile Basin[J]. Science of The Total Environment, 2018, 630: 1309-1323.
doi: 10.1016/j.scitotenv.2018.02.249 |
[59] |
Lu Y, Tian F, Guo L et al. Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang-Mekong River[J]. Hydrology and Earth System Sciences, 2021, 25(4): 1883-1903.
doi: 10.5194/hess-25-1883-2021 |
[60] |
Hui R, Lund J R, Madani K. Game theory and risk-based leveed river system planning with noncooperation[J]. Water Resources Research, 2016, 52(1): 119-134.
doi: 10.1002/2015WR017707 |
[61] |
Zawahri N A, Mitchell S M L. Fragmented governance of international rivers: Negotiating bilateral versus multilateral treaties[J]. International Studies Quarterly, 2011, 55(3): 835-858.
doi: 10.1111/j.1468-2478.2011.00673.x |
[1] | Hong Siyang, Wang Hongrui, Cheng Tao, Liang Junfen, Fang Wei. Circulation Characteristics of Virtual Water and Embodied Energy in China from the Perspective of International and Inter-provincial Trade [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(10): 1735-1746. |
[2] | Zuo Xiuling, Su Fenzhen, Wang Qi, Wang Chenliang, Jiang Huiping, Shi Wei. Thermal Stress Temporary Refugia Under Global Change for Coral Reefs in the South China Sea Islands [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(5): 814-822. |
[3] | Jingfeng Bai, Haijun Zhang. Spatio-temporal Variation and Driving Force of Water-Energy-Food Pressure in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(10): 1653-1660. |
[4] | Yuan-dong WANG, Xi-yong HOU, Ping SHI, Liang-ju YU. Sensitivity Analysis Along the Bohai Coast Under the Background of Sea Level Rise [J]. SCIENTIA GEOGRAPHICA SINICA, 2013, 33(12): 1514-1523. |
[5] | Shuang-shuang LI, Jun-ping YAN, Jia WAN. The Characteristics of Temperature Change in Qinling Mountains [J]. SCIENTIA GEOGRAPHICA SINICA, 2012, 32(7): 853-858. |
[6] | LI Zong-Xing, HE Yuan-Qing, JIA Wen-Xiong, PANG Hong-Xi, YUAN Ling-Ling, NING Bao-Ying, LIU Qiao, HE Xian-Zhong, SONG Bo, ZHANG Ning-Ning. Response of "Glaciers-Runoff" System in a Typical Temperate-Glacier, Hailuogou Glacier in Gongga Mountain of China to Global Change [J]. SCIENTIA GEOGRAPHICA SINICA, 2008, 28(2): 229-234. |
[7] | WANG Li-Ming, GUAN Qing-Feng, ZHENG Jin-Yun. Problems of Man-land Relationship System Theory under Global Change [J]. SCIENTIA GEOGRAPHICA SINICA, 2003, 23(4): 391-397. |
[8] | ZHA Xiao-chun, YAN Jun-ping. Comparison of Runoff and Sediment between Southern and Northern Rivers to Qinling Mountains under Global Change [J]. SCIENTIA GEOGRAPHICA SINICA, 2002, 22(4): 403-407. |
[9] | GONG Zi-tong, CHEN Hong-zhao, LIU Liang-wu, LUO Guo-bao. Environmental Change of Soils and Sustainable Development [J]. SCIENTIA GEOGRAPHICA SINICA, 2000, (6): 517-522. |
[10] | Ren Guoyu. SOME PROGRESSES AND PROBLEMS IN PALEOCLIMATOLOGY [J]. SCIENTIA GEOGRAPHICA SINICA, 1999, 19(4): 368-378. |
[11] | Gao Feng, Zhu Qijiang. THE ADVANCE IN MULTI-ANGLE REMOTE SENSING OF VEGETATION CANOPY [J]. SCIENTIA GEOGRAPHICA SINICA, 1997, 17(4): 346-354. |
|