SCIENTIA GEOGRAPHICA SINICA ›› 2023, Vol. 43 ›› Issue (8): 1471-1483.doi: 10.13249/j.cnki.sgs.2023.08.016
Previous Articles Next Articles
Zhang Hongxin1(), Chen Huiting1, Lu Yanchi1, Liu Xiaoyan2,3,4, Chen Cuizhen5, Liu Yaolin1,6,7,*(
)
Received:
2022-08-11
Revised:
2023-01-01
Online:
2023-08-20
Published:
2023-08-30
Contact:
Liu Yaolin
E-mail:zhx0227@sina.com;yaolin610@163.com
Supported by:
CLC Number:
Zhang Hongxin, Chen Huiting, Lu Yanchi, Liu Xiaoyan, Chen Cuizhen, Liu Yaolin. Urban road network topological characterization of multi-scenario flooding impacts: A case study of Wuhan Metropolitan Region[J].SCIENTIA GEOGRAPHICA SINICA, 2023, 43(8): 1471-1483.
Table 2
Changes of transport network topological characterization in different scenarios
拓扑指标 | 重现期 | 增加(占比) | 减少(占比) | 不变(占比) | 被淹没(占比) |
节点中介中心性 | 10 a | 1974(42.80%) | 1498(32.48%) | 815(17.67%) | 325(7.05%) |
30 a | 1747(37.88%) | 1492(32.35%) | 665(14.42%) | 708(15.35%) | |
50 a | 1151(24.96%) | 1939(42.04%) | 586(12.71%) | 936(20.29%) | |
连边中介中心性 | 10 a | 3083(47.09%) | 1693(25.86%) | 436(6.66%) | 1335(20.39%) |
30 a | 2667(40.74%) | 1506(23.00%) | 299(4.57%) | 2075(31.69%) | |
50 a | 1574(24.04%) | 2304(35.19%) | 244(3.73%) | 2425(37.04%) | |
节点邻近中心性 | 10 a | 417(9.04%) | 3870(83.91%) | 0(0.00%) | 325(7.05%) |
30 a | 587(12.73%) | 3317(71.92%) | 0(0.00%) | 708(15.35%) | |
50 a | 37(0.80%) | 3639(78.90%) | 0(0.00%) | 936(20.29%) |
[1] | Huang G. Enhancing dialogue between flood risk management and road engineering sectors for flood risk reduction[J]. Sustainability, 2018, 10(6): 1773-1788. |
[2] |
王秀荣. 城市道路路面排水设计探讨[J]. 给水排水, 2014, 50(10): 35-38.
doi: 10.13789/j.cnki.wwe1964.2014.0264 |
Wang Xiurong. Discussion on drainage design of urban roads. Water & Wastewater Engineering, 2014, 50(10): 35-38.
doi: 10.13789/j.cnki.wwe1964.2014.0264 |
|
[3] |
董洁霜, 吴雨薇, 路庆昌. 降雨条件下城市道路网络拓扑结构脆弱性分析[J]. 交通运输系统工程与信息, 2015, 15(5): 109-113+122.
doi: 10.3969/j.issn.1009-6744.2015.05.016 |
Dong Jieshuang, Wu Yuwei, Lu Qingchang. Road network topology vulnerability identification considering the intensity of rainfall in urban areas. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 109-113+122.
doi: 10.3969/j.issn.1009-6744.2015.05.016 |
|
[4] |
曹娟, 张颖淳. 考虑级联效应的交通网络关键站点评估及其安全优化[J]. 微电子学与计算机, 2014, 31(6): 171-175.
doi: 10.19304/j.cnki.issn1000-7180.2014.06.040 |
Cao Juan, Zhang Yingchun. Key site evaluation considering cascading effect behaviors and security optimization on traffic network. Microelectronics & Computer, 2014, 31(6): 171-175.
doi: 10.19304/j.cnki.issn1000-7180.2014.06.040 |
|
[5] | Wang W P, Yang S N, Stanley H E et al. Local floods induce large-scale abrupt failures of road networks[J]. Nature Communications, 2019, 10(1):1-11. |
[6] | Gajanayake A, Guomin Zhang, Khan T et al. Postdisaster impact assessment of road infrastructure: State-of-the-art review[J]. Natural Hazards Review, 2020, 21(1): 3119002.1-3119002.14. |
[7] | Zhang M L, Xu M H, Wang Z L et al. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model[J]. Journal of Hydrology, 2021, 603:127105. |
[8] |
孙阿丽, 石纯, 石勇. 基于情景模拟的暴雨内涝危险性评价——以黄浦区为例[J]. 地理科学, 2010, 30(3): 465-468.
doi: 10.13249/j.cnki.sgs.2010.03.003 |
Sun Ali, Shi Chun, Shi Yong. Hazard assessment on rainstorm waterlogging disasters in Huangpu District, Shanghai based on scenario simulation. Scientia Geographica Sinica, 2010, 30(3): 465-468.
doi: 10.13249/j.cnki.sgs.2010.03.003 |
|
[9] | Barthelemy M. Spatial networks[J]. Physics Reports-Review Section of Physics Letters, 2011, 499(1-3): 1-101. |
[10] | Karduni A, Kermanshah A, Derrible S. A protocol to convert spatial polyline data to network formats and applications to world urban road networks[J]. Scientific Data, 2016,1:1-7. |
[11] |
Shiraki W, Takahashi K, Inomo H et al. A proposed restoration strategy for road networks after an earthquake disaster using resilience engineering[J]. Journal of Disaster Research, 2017, 12(4): 722-732.
doi: 10.20965/jdr.2017.p0722 |
[12] |
Zhang Weili, Wang Naiyu. Resilience-based risk mitigation for road networks[J]. Structural Safety, 2016, 62: 57-65.
doi: 10.1016/j.strusafe.2016.06.003 |
[13] | He Yufeng, Ma Deying, Xiong Junnan et al. Flash flood vulnerability assessment of roads in China based on support vector machine[J]. Geocarto International, 2021: 1-28. |
[14] | 黄勇, 魏猛, 万丹, 等. 西南山地多灾区域道路网络可靠性规律分析[J]. 同济大学学报(自然科学版), 2020, 48(4): 526-535. |
Huang Yong, Wei Meng, Wan Dan et al. Analysis of reliability of road network in mountainous disaster-prone areas in Southwest China. Journal of Tongji University (Natural Science), 2020, 48(4): 526-535. | |
[15] | Hosseini S, Barker K, Ramirez-Marquez J. A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safety, 2016, 145(Jan.): 47-61. |
[16] |
Tachaudomdach S, Upayokin A, Kronprasert N et al. Quantifying road-network robustness toward flood-resilient transportation systems[J]. Sustainability, 2021, 13(6): 3172
doi: 10.3390/su13063172 |
[17] | Kermanshah A, Derrible S. Robustness of road systems to extreme flooding: Using elements of GIS, travel demand, and network science[J]. Natural Hazards, 2017, 86: 151–164. |
[18] | Sasabe M, Fujii K, Kasahara S. . Road network risk analysis considering people flow under ordinary and evacuation situations[J]. Environment and Planning B, Urban analytics and City Science, 2020, 47(5): 759-774. |
[19] | Mattsson L G, Jenelius E. Vulnerability and resilience of transport systems—A discussion of recent research[J]. Transportation Research Part A, 2015, 81(NOV.): 16-34. |
[20] |
刘家福, 张柏. 暴雨洪灾风险评估研究进展[J]. 地理科学, 2015(3): 346-351.
doi: 10.13249/j.cnki.sgs.2015.03.013 |
Liu Jiafu, Zhang Bai. Progress of rainstorm flood risk assessment. Scientia Geographica Sinica, 2015(3): 346-351.
doi: 10.13249/j.cnki.sgs.2015.03.013 |
|
[21] |
Kendon E J, Roberts N M, Senior C A et al. Realism of rainfall in a very high-resolution regional climate model[J]. Journal of Climate, 2012, 25(17): 5791-5806.
doi: 10.1175/JCLI-D-11-00562.1 |
[22] | Freiria S, Ribeiro B, Tavares A O. Understanding road network dynamics: Link-based topological patterns[J]. Journal of Transport Geography, 2015, 46(1): 55-66. |
[23] |
Casali Y, Heinimann H R. A topological characterization of flooding impacts on the Zurich road network[J]. PloS One, 2019, 14(7): e0220338
doi: 10.1371/journal.pone.0220338 |
[24] |
Liu J, Shi Z, Tan X. Measuring the dynamic evolution of road network vulnerability to floods: A case study of Wuhan, China[J]. Travel Behaviour and Society, 2021, 23: 13-24.
doi: 10.1016/j.tbs.2020.10.009 |
[25] | Jonkman S N, Kelman I. An analysis of the causes and circumstances of flood disaster deaths[J]. Disasters: The International Journal of Disaster Studies and Practice, 2005, 29(1): 75-97. |
[26] |
Li Y, Gong J H, Niu L et al. A physically based spatiotemporal method of analyzing flood impacts on urban road networks[J]. Natural Hazards, 2019, 97(1): 121-137.
doi: 10.1007/s11069-019-03630-3 |
[27] | Kasmalkar I G, Serafin K A, Miao Y F et al. When floods hit the road: Resilience to flood-related traffic disruption in the San Francisco Bay Area and beyond[J]. Science Advances, 6(32). |
[28] | Borowska-Stefanska M, Wisniewski S. Changes in transport accessibility as a result of flooding: A case study of the Mazovia Province (Eastern Poland)[J]. Environmental Hazards: Human and Policy Dimensions, 2018, 17(1): 56-83. |
[29] | Pregnolato M, Ford A, Glenis V et al. Impact of climate change on disruption to urban transport networks from pluvial flooding[J]. Journal of Infrastructure Systems, 2018, 23(4). |
[30] |
陈翠珍, 蒋佳鑫, 李敏. 湖北武汉市中心城区内涝风险图编制及应用[J]. 中国防汛抗旱, 2018, 28(3): 12-15,27.
doi: 10.16867/j.cnki.cfdm.20170720.004 |
Chen Cuizhen, Jiang Jiaxin, Limin. Waterlogging risk mapping and application in urban center of Wuhan City, Hubei Province. China Flood & Drought Management, 2018, 28(3): 12-15,27.
doi: 10.16867/j.cnki.cfdm.20170720.004 |
|
[31] |
Xiong Y Y, Melching C S. Comparison of kinematic-wave and nonlinear reservoir routing of urban watershed runoff[J]. Journal of Hydrologic Engineering, 2005, 10(1): 39-49.
doi: 10.1061/(ASCE)1084-0699(2005)10:1(39) |
[32] |
Moriasi D, Arnold J, Bingner R et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
doi: 10.13031/2013.23153 |
[33] | Pregnolato M, Ford A, Wilkinson S M et al.. The impact of flooding on road transport:A depth-disruption function[J]. Transportation Research, Part D Transport and Environment, 2017, 55D(8): 67-81. |
[34] | Yin J, Yu D P, Yin Z et al. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China[J]. Journal of Hydrology, 2016, 537138-145. |
[35] |
Kramer M, Terheiden K, Wieprecht S. Safety criteria for the trafficability of inundated roads in urban floodings[J]. International Journal of Disaster Risk Reduction, 2016, 17: 77-84.
doi: 10.1016/j.ijdrr.2016.04.003 |
[36] | 李梦雅. 暴雨内涝情景下城市通勤出行的暴露度与交通特征研究[D]. 上海: 华东师范大学, 2019. |
Li Mengya. Research on commuters' exposure to pluvial flash flooding and its impacts on the peak traffic features: A case study in central Shanghai. Shanghai: East China Normal University, 2019. | |
[37] |
Sen S S, Sinha K, Sub-r-pa C et al. Optimal distribution of traffic in Manhattan road networks for minimizing routing-time[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6799-6820.
doi: 10.1109/TITS.2020.2994836 |
[38] |
Sergio P, Vito L, Wang Fahui et al. Street centrality and the location of economic activities in Barcelona[J]. Urban Studies, 2012, 49(7): 1471-1488.
doi: 10.1177/0042098011422570 |
[39] | 田柳, 狄增如, 姚虹. 权重分布对加权网络效率的影响[J]. 物理学报, 2011, 60(2): 803-808. |
Tian Liu, Di Zengru, Yao Hong. Effect of distribution of weight on the efficiency of weighted networks. Acta Physica Sinica, 2011, 60(2): 803-808. | |
[40] |
Murray A. An improved index of centrality[J]. Behavioral Science, 1965, 10(2): 161-163.
doi: 10.1002/bs.3830100205 |
[41] |
Freeman L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41.
doi: 10.2307/3033543 |
[42] |
Crucitti P, Latora V, Porta S. Centrality in networks of urban streets[J]. Chaos, 2006, 16(1): 15113-1-15113-9-0.
doi: 10.1063/1.2150162 |
[43] | 何树红, 吴迪, 王珊. 基于极值理论的洪水灾害损失模型研究[J]. 云南民族大学学报(自然科学版), 2014, 23(1): 62-65. |
He Shuhong, Wu Di, Wang Shan. A study of the flood-loss model based on the extreme value theory. Journal of Yunnan Minzu University (Natural Sciences Edition), 2014, 23(1): 62-65. | |
[44] | Strano E, Nicosia V, Latora Vito et al. Elementary processes governing the evolution of road networks[J]. Scientific Reports, 20122(296):1-8. |
[45] |
Kermanshah A, Derrible S. Robustness of road systems to extreme flooding: Using elements of GIS, travel demand, and network science[J]. Natural Hazards, 2017, 86(1): 151-164.
doi: 10.1007/s11069-016-2678-1 |
[46] |
Erath A, Loechl M, Axhausen K W. Graph-theoretical analysis of the Swiss road and railway networks over time[J]. Networks and Spatial Economics, 2009, 9(3): 459-483.
doi: 10.1007/s11067-007-9036-5 |
[1] | Long Xueqin, Zhao Huan, Zhou Meng, Mao Jianxu, Chen Yixin. Spatiotemporal Heterogeneity of the Impact of Built Environment in Chengdu on Online Car-hailing Passengers’ Pick-up Points [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(12): 2076-2084. |
[2] | Lin Yuying, Li Baoyin, Qiu Rongzu, Lin Jinguo, Wu Shidai. Improvement of Road Network Measurement Indexes and Their Spatial Differentiation Characteristics: Taking the Upper Minjiang River as Example [J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(6): 951-959. |
[3] | DONG Hong-zhao, ZHOU Min, CHEN Ning, GUO Ming-fei. Typical Colony Route of Urban Traffic Based on Spatial Analysis —The Case of Hangzhou City [J]. SCIENTIA GEOGRAPHICA SINICA, 2010, 30(5): 673-678. |
[4] | CHAI Yan-Wei, XIAO Zuo-Peng, LIU Zhi-Lin. Comparative Analysis on CO2 Emission Per Household in Daily Travel Based on Spatial Behavior Constraints [J]. SCIENTIA GEOGRAPHICA SINICA, 2011, 31(7): 843-849. |
|