SCIENTIA GEOGRAPHICA SINICA ›› 2023, Vol. 43 ›› Issue (8): 1495-1505.doi: 10.13249/j.cnki.sgs.2023.08.018
Hou Chengzhi1(), Huang Danqing2, Gui Dongwei3, Lei Jiaqiang3, Lu Huayu1, Xu Zhiwei1,*(
)
Received:
2022-05-16
Revised:
2022-09-12
Online:
2023-08-20
Published:
2023-08-30
Contact:
Xu Zhiwei
E-mail:chengzhihou@smail.nju.edu.cn;zhiweixu@nju.edu.cn
Supported by:
CLC Number:
Hou Chengzhi, Huang Danqing, Gui Dongwei, Lei Jiaqiang, Lu Huayu, Xu Zhiwei. Spatiotemporal variations of climate extremes and influential factors in deserts and sandy fields of northern China from 1961 to 2019[J].SCIENTIA GEOGRAPHICA SINICA, 2023, 43(8): 1495-1505.
Table 1
The definition of extreme climate indices in this paper
类型 | 指数 | 名称 | 单位 | 定义 | |
极端气温指数 | 极值指数 | TXx | 极端最高气温 | ℃ | 日最高气温的年最大值 |
TXn | 最高气温极小值 | ℃ | 日最高气温的年最小值 | ||
TNx | 最低气温极大值 | ℃ | 日最低气温的年最大值 | ||
TNn | 极端最低气温 | ℃ | 日最低气温的年最小值 | ||
冷事件指数 | FD | 霜冻日数 | d | 日最低气温<0℃的日数 | |
ID | 结冰日数 | d | 日最高气温<0℃的日数 | ||
TX10p | 冷昼日数 | d | 日最高气温<10%分位值的日数 | ||
TN10p | 冷夜日数 | d | 日最低气温<10%分位值的日数 | ||
暖事件指数 | SU | 夏天日数 | d | 日最高气温>25℃的日数 | |
TR | 热夜日数 | d | 日最低气温>20℃的日数 | ||
TX90p | 暖昼日数 | d | 日最高气温>90%分位值的日数 | ||
TN90p | 暖夜日数 | d | 日最低气温>90%分位值的日数 | ||
持续指数 | CSDI | 持续冷日指数 | d | 至少连续6 d日最高气温<10%分位数的日数 | |
WSDI | 持续暖日指数 | d | 至少连续6 d日最高气温>90%分位数的日数 | ||
极端降水指数 | 降水量级指数 | PRCPT | 年降水量 | mm | > 1 mm降水日累积量 |
SDII | 降水强度 | mm/d | 年降水量与湿日日数(日降水量≥1 mm)的比值 | ||
Rx1d | 1日最大降水量 | mm | 最大1日降水量 | ||
Rx5d | 5日最大降水量 | mm | 最大连续5日降水量 | ||
R95p | 强降水量 | mm | 日降水量>95%分位值的总降水量 | ||
R99p | 极强降水量 | mm | 日降水量>99%分位值的总降水量 | ||
降水日指数 | R10 | 中雨日数 | d | 日降水量>10 mm的日数 | |
R25 | 大雨日数 | d | 日降水量>25 mm的日数 | ||
持续指数 | CDD | 持续干旱指数 | d | 日降水量<1 mm的最长连续日数 | |
CWD | 持续湿润指数 | d | 日降水量≥1 mm的最长连续日数 |
Table 2
Comparison of the change trends of extreme climate indices in different study areas
区域 | 时段 | TXx | TXn | TNx | TNn | FD | ID | SU | TR | 数据来源 |
注:*和**分别代表变化趋势通过了95%、99%的显著性水平检验;指数解释见表1。 | ||||||||||
中国北方沙漠沙地 | 1961—2019年 | 0.17** | 0.30* | 0.31** | 0.49** | -3.57** | -1.96** | 2.98** | 2.18** | 本文 |
黄土高原 | 1960—2013年 | 0.20 | 0.30 | 0.30** | 0.40* | -3.83** | -3.43** | 4.17** | 1.40** | [ |
长江流域 | 1962—2011年 | 0.16* | 0.33** | 0.19** | 0.47** | -3.29** | -0.48** | 2.93** | 1.80** | [ |
甘肃 | 1960—2016年 | 0.30** | 0.30 | 0.10** | 0.10 | -2.94** | -2.16** | 2.73** | 0.90** | [ |
中国全域 | 1961—2010年 | 0.17* | 0.32* | 0.28* | 0.58* | -3.90* | -2.10* | 1.90* | 1.20* | [ |
全球陆地 | 1951—2015年 | 0.11* | 0.28* | 0.12* | 0.45* | -1.80* | -1.23* | 0.47* | 0.91* | [ |
[1] | 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003, 58(supplementary): 1-10. |
Zhai Panmao, Pan Xiaohua. Changes of extreme temperature and precipitation in northern China over the past 50 years. Acta Geographica Sinica, 2003, 58(supplementary): 1-10. | |
[2] |
Lin Q, Wang Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018, 15(12): 2357-2372.
doi: 10.1007/s10346-018-1037-6 |
[3] |
Lobell D B, Hammer G L, Mclean G et al. The critical role of extreme heat for maize production in the United States[J]. Nature Climate Change, 2013, 3(5): 497-501.
doi: 10.1038/nclimate1832 |
[4] | Alexander L V, Zhang X, Peterson T C et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research, 2006, 111:D05109. |
[5] |
Donat M G, Alexander L V, Yang H et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(5): 2098-2118.
doi: 10.1002/jgrd.50150 |
[6] | IPCC. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press, 2021. |
[7] | 常茜, 鹿化煜, 吕娜娜, 等. 1992—2015年中国沙漠面积变化的遥感监测与气候影响分析[J]. 中国沙漠, 2020, 40(1): 57-63. |
Chang Qian, Lu Huayu, Lyu Nana et al. Remote sensing monitoring and climate impact analysis of desert area change in China from 1992 to 2015. Journal of Desert Research, 2020, 40(1): 57-63. | |
[8] | 普宗朝, 张山清, 李景林, 等. 近47a塔克拉玛干沙漠周边地区气候变化[J]. 中国沙漠, 2010, 30(2): 413-421. |
Pu Zongchao, Zhang Shanqing, Li Jinglin et al. Climate change around Taklamakan Desert in recent 47 years. Journal of Desert Research, 2010, 30(2): 413-421. | |
[9] | 孙东霞, 杨建成. 古尔班通古特沙漠腹地与周边的降水特征分析[J]. 干旱区地理, 2010, 33(5): 769-774. |
Sun Dongxia, Yang Jiancheng. Analysis of precipitation characteristics in and around the hinterland of Gurban Tunggut desert. Arid Land Geography, 2010, 33(5): 769-774. | |
[10] | 马宁, 王乃昂, 朱金峰, 等. 巴丹吉林沙漠周边地区近50a来气候变化特征[J]. 中国沙漠, 2011, 31(6): 1541-1547. |
Ma Ning, Wang Naiang, Zhu Jinfeng et al. Climate change characteristics of the surrounding areas of Badain Jaran Desert in the past 50 years. Journal of Desert Research, 2011, 31(6): 1541-1547. | |
[11] | 梁晓燕, 王乃昂, 李卓仑, 等. 腾格里沙漠周边地区1960—2012年气候变化特征[J]. 中国沙漠, 2016, 36(2): 474-482. |
Liang Xiaoyan, Wang Naiang, Li Zhuolun et al. Climate change characteristics in the surrounding areas of Tengger Desert from 1960 to 2012. Journal of Desert Research, 2016, 36(2): 474-482. | |
[12] | 胡钰玲, 宁贵财, 康彩燕, 等. 库姆塔格沙漠周边地区极端降水的时空变化特征[J]. 中国沙漠, 2017, 37(3): 536-545. |
Hu Yuling, Ning Guicai, Kang Caiyan et al. Spatial-Temporal variations of extreme precipitation in the surrounding areas of Kumtag Desert. Journal of Desert Research, 2017, 37(3): 536-545. | |
[13] | 王新萍, 杨青. 塔克拉玛干沙漠周边地区极端弱降水的时空变化特征[J]. 中国沙漠, 2014, 34(5): 1376-1385. |
Wang Xinping, Yang Qing. Spatial-Temporal variations of extreme weak precipitation around Taklamakan Desert. Journal of Desert Research, 2014, 34(5): 1376-1385. | |
[14] |
Thomas D S G, Shaw P A. 'Relict' desert dune systems: Interpretations and problems[J]. Journal of Arid Environments, 1991, 20: 1-14.
doi: 10.1016/S0140-1963(18)30771-7 |
[15] | Goudie A S, Wilkinson J. The warm desert environment[M]. London: Cambridge University Press, 1977. |
[16] |
Bergametti G, Rajot J L, Pierre C et al. How long does precipitation inhibit wind erosion in the Sahel?[J]. Geophysical Research Letters, 2016, 43(12): 6643-6649.
doi: 10.1002/2016GL069324 |
[17] |
Lu H, Yi S, Xu Z et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J]. Chinese Science Bulletin, 2013, 58: 2775-2783.
doi: 10.1007/s11434-013-5919-7 |
[18] | 王乃昂, 马宁, 陈红宝, 等. 巴丹吉林沙漠腹地降水特征的初步分析[J]. 水科学进展, 2013, 24(2): 153-160. |
Wang Naiang, Ma Ning, Chen Hongbao et al. Preliminary analysis of precipitation characteristics in the hinterland of Badain Jaran Desert. Advances in Water Science, 2013, 24(2): 153-160. | |
[19] |
Zhang P, Ren G, Xu Y et al. Observed changes in extreme temperature over the global land based on a newly developed station daily dataset[J]. Journal of Climate, 2019, 32(24): 8489-8509.
doi: 10.1175/JCLI-D-18-0733.1 |
[20] | 赵安周, 刘宪锋, 朱秀芳, 等. 1965—2013年黄土高原地区极端气温趋势变化及空间差异[J]. 地理研究, 2016, 35(4): 639-652. |
Zhao Anzhou, Liu Xianfeng, Zhu Xiufang et al. Trends and spatial differences of extreme temperatures in the Loess Plateau region from 1965 to 2013. Geographical Research, 2016, 35(4): 639-652. | |
[21] |
王琼, 张明军, 王圣杰, 等. 1962—2011年长江流域极端气温事件分析[J]. 地理学报, 2013, 68(5): 611-625.
doi: 10.11821/xb201305004 |
Wang Qiong, Zhang Mingjun, Wang Shengjie et al. Analysis of extreme temperature events in the Yangtze River Basin from 1962 to 2011. Acta Geographica Sinica, 2013, 68(5): 611-625.
doi: 10.11821/xb201305004 |
|
[22] | 梁晓燕, 牛震敏, 许兴斌, 等. 1960—2016年甘肃省极端气候事件变化特征[J]. 兰州大学学报(自然科学版), 2020, 56(2): 231-242. |
Liang Xiaoyan, Niu Zhenmin, Xu Xingbin et al. Change characteristics of extreme climate events in Gansu Province from 1960 to 2016. Journal of Lanzhou University (Natural Science Edition), 2020, 56(2): 231-242. | |
[23] |
Zhou B, Xu Y, Wu J et al. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset[J]. International Journal of Climatology, 2016, 36(3): 1051-1066.
doi: 10.1002/joc.4400 |
[24] | Huang J, Yu H, Guan X et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016(6): 166-171. |
[25] |
Kruger A C, Sekele S S. Trends in extreme temperature indices in South Africa: 1962—2009[J]. International Journal of Climatology, 2013, 33(3): 661-676.
doi: 10.1002/joc.3455 |
[26] |
Alexander L V, Arblaster J M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections[J]. International Journal of Climatology, 2009, 29(3): 417-435.
doi: 10.1002/joc.1730 |
[27] |
Grotjahn R, Black R, Leung R et al. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends[J]. Climate Dynamics, 2016, 46: 1151-1184.
doi: 10.1007/s00382-015-2638-6 |
[28] |
Zheng Y, Dong L, Xia Q et al. Effects of revegetation on climate in the Mu Us sandy land of China[J]. Science of The Total Environment, 2020, 739: 139958
doi: 10.1016/j.scitotenv.2020.139958 |
[29] | Xu Z, Hu R, Wang K et al. Recent greening (1981—2013) in the Mu Us dune field, north-central China, and its potential causes[J]. Land Degradation & Development, 2018, 29(5): 1509-1520. |
[30] | 张宝庆, 田磊, 赵西宁, 等. 植被恢复对黄土高原局地降水反馈效应研究[J]. 中国科学:地球科学, 2021, 51(7): 1080-1091. |
Zhang Baoqing, Tian Lei, Zhao Xining et al. Feedback effect of vegetation restoration on local precipitation on the Loess Plateau. Science China Earth Sciences, 2021, 51(7): 1080-1091. | |
[31] |
Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical research letters, 1998, 25(9): 1297-1300.
doi: 10.1029/98GL00950 |
[32] |
Chen C, Zhang X, Lu H et al. Increasing summer precipitation in arid central Asia linked to the weakening of the East Asian Summer Monsoon in the recent decades[J]. International Journal of Climatology, 2021, 41(2): 1024-1038.
doi: 10.1002/joc.6727 |
[33] | 姜大膀, 王会军. 20世纪后期东亚夏季风年代际减弱的自然属性[J]. 科学通报, 2005(20): 74-80. |
Jiang Daban, Wang Huijun. Natural attributes of intergenerational weakening of the East Asian summer monsoon in the late 20th century. Science Bulletin, 2005(20): 74-80. | |
[34] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164. |
Shi Yafeng, Shen Yongping, Li Dongliang et al. Discussion on the characteristics and trend of climate transition from warm dry to warm wet in northwest China. Quaternary Research, 2003, 23(2): 152-164. | |
[35] | 姚俊强, 毛炜峄, 陈静, 等. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1): 57-72. |
Yao Junqiang, Mao Weiyi, Chen Jing et al. Discussion on the signals and impacts of the "wet dry transition" in Xinjiang climate. Acta Geographica Sinica, 2021, 76(1): 57-72. | |
[36] | 朱益民, 杨修群. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 2003, 61(6): 641-654. |
Zhu Yimin, Yang Xiuqun. The relationship between Pacific interdecadal oscillations and climate variability in China. Acta Meteorologica Sinica, 2003, 61(6): 641-654. | |
[37] |
Thomas N, Nigam S. Twentieth-Century climate change over Africa: Seasonal hydroclimate trends and Sahara desert expansion[J]. Journal of Climate, 2018, 31(9): 3349-3370.
doi: 10.1175/JCLI-D-17-0187.1 |
[38] |
He J, Yang K, Tang W et al. The First high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 1-11.
doi: 10.1038/s41597-019-0340-y |
[1] | Wang Fang, Zhang Jintao. Projection of population exposure to compound extreme heat-humidity events in China in the 21st century [J]. SCIENTIA GEOGRAPHICA SINICA, 2023, 43(7): 1259-1269. |
[2] | Dong Weimiao. Establishment of Xixia and the role of climate in warfare between Xixia and the Northern Song Dynasty [J]. SCIENTIA GEOGRAPHICA SINICA, 2023, 43(7): 1310-1316. |
[3] | Deng Haijun, He Wenjun, Liu Qun, Chen Xingwei. Response of terrestrial water storage to vegetation change on the Qinghai-Tibet Plateau [J]. SCIENTIA GEOGRAPHICA SINICA, 2023, 43(6): 952-960. |
[4] | Wang Yong, Zi Feng, Lu Shanlong, Li Mingyang, Zhou Jinfeng, Yang Xiaohong, Wang Wenzhong, Niu Ruiji. Analysis of surface-groundwater changes in the Tarim River Basin of Xinjiang from 1989 to 2019 [J]. SCIENTIA GEOGRAPHICA SINICA, 2023, 43(5): 899-909. |
[5] | Li Yan, Gong Jie, Dai Rui, Jin Tiantian. Spatio-temporal Variation of Vegetation Cover and Its Relationship with Climatic Factors and Human Activities in the Southwest Tibetan Plateau [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(5): 761-771. |
[6] | Deng Haijun, Lu Yijin, Wang Yuanyuan, Chen Xingwei, Liu Qun. Assessment of Actual Evapotranspiration in the Minjiang River Basin Based on the GLDAS-Noah Model [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(3): 548-556. |
[7] | Ye Xuchun, Wu Juan, Li Xianghu. Compound Driving Mechanism of Water Level Change in the Poyang Lake [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(2): 352-361. |
[8] | Pan Wen, Ju Shuang, Liu Qing, Li Guicai. Evolution of Regional Tourism Traffic Pattern and Tourist Source-Market Under High-speed Rail Network of Yunnan Province, China [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(12): 2141-2149. |
[9] | Li Shuangshuang, Duan Keqin, Wang Ting, He Jinping, Yan Junping. Spatio-temporal Variation of Cold-season Snowfall in the South and North of the Qinling Mountains During 1970-2018 [J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(1): 163-173. |
[10] | Wang Wen, Hu Yanjun, Xu Chuanyi. Spatial-temporal Variations of Heat Waves in the Huaihe River Basin from 1961 to 2018 [J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(5): 911-921. |
[11] | Gao Yanpeng, Chen Wenjun. Spatial and Temporal Variation of Extreme Temperature and Grain Yield Response in Liaoning Province from 1984 to 2020 [J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(11): 2052-2062. |
[12] | Ji Lin, Duan Keqin. Variations of Extreme Temperature and Its Response on Regional Warming in the Weihe River Basin During 1960-2017 [J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(3): 466-477. |
[13] | Zhao Xueyan, Wang Rong, Wang Xiaoqi, Liu Jianghua. Spatio-temporal Distribution and Influencing Factors of Environmental Pollution Incidents Based on Multi-scales in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(9): 1361-1370. |
[14] | Qi Qinghua,Cai Rongshuo,Guo Haixia. The Climatic Variations of Temperature Extremes in the Eastern of China [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(8): 1340-1350. |
[15] | Shao Hanhua,Liu Kechong,Qi Rong. Regional Differences and Dynamic Evolution of the Quaternity Cooperation of Modern Industrial System in China [J]. SCIENTIA GEOGRAPHICA SINICA, 2019, 39(7): 1139-1146. |
|