
Variations of the East Asian Summer Monsoon since the Last Deglaciation recorded by loess deposits in the Linfen Basin
Chen Jie, Yin Jianan, Tian Qingchun
GEOGRAPHICAL SCIENCE ›› 2025, Vol. 45 ›› Issue (2) : 415-424.
Variations of the East Asian Summer Monsoon since the Last Deglaciation recorded by loess deposits in the Linfen Basin
As an important part of global climate systems, the East Asian Summer Monsoon (EASM) and its variations are the focus of academic research. The associated precipitation is closely related to socio-economic development of East Asia, affecting on the production and life of billions of populations. It is thus important to investigate the variability of the EASM on various time-scales and to explore its underlying forcing mechanisms. However, monsoon precipitation over China exhibits large spatial differences, based on reconstructions from various types of paleoclimatic archives and proxies. An enhanced EASM is characterized by increased rainfall in northern China and by reduced rainfall in southern China, with this relationship occurring on different time scales during the Holocene. Moreover, the stability of the EASM during Holocene and the timing of the Holocene climatic optimum throughout its dominated regions remains controversial. These pending questions fundamentally limit our further understanding of the evolution of human-environment interactions and the prediction of long-term trends of regional and global climate in the context of global warming. The Linfen Basin is situated on the southeastern margin of the Chinese Loess Plateau, belonging to a transitional zone between semi-arid and semi-humid region and being sensitive to EASM variation. In this study, we chose Zhong Liang (ZL) loess section in the Linfen Basin as research object to reconstruct the variation of the EASM since the Last Deglaciation, by using paleomagnetic dating providing age control and utilizing magnetic susceptibility and elemental composition proxies reconstructing the variability of the EASM since the Last Deglaciation. The results show that a series of short-term climate fluctuation events have been recorded by magnetic susceptibility and elemental composition of ZL section since the Last Deglaciation, such as the Younger Dryas (YD), 10.2 ka B.P., 9.2 ka B.P. and 4.2 ka B.P. cooling event. However, the 8.2 ka B.P. cooling event was not evident in this region. These observations suggest the climate of Linfen Basin varies with global features of millennial-scale and high-frequency oscillation since the Last Deglaciation, meanwhile affected by regional climate changes. Generally, the EASM shows a continuous enhancement from 16.6 to 6.0 ka B.P., in which reaches a maximum during (7.6—6.0) ka B.P., and then a fluctuated declining trend after 6 ka B.P. Moreover, the EASM variation generally matches that of insolation during the middle Holocene, whilst lags that of insolation during the early Holocene, suggesting the evolution of the EASM was mainly controlled by the Northern Hemisphere summer insolation on orbital timescale, and meanwhile modulated by high-latitude Northern Hemisphere ice volume. Due to the Atlantic Meridional Overturning Circulation (AMOC) changes caused by the injection of global ice volume during the Last Deglaciation and early Holocene, variation and intensity of the EASM was suppressed to lag the response of Northern Hemisphere summer insolation during the early Holocene, and to cause the evident weakness of the EASM during YD and 9.2 ka B.P. period.
Linfen Basin / loess deposits / East Asian Summer Monsoon / Holocene / Last Deglaciation {{custom_keyword}} /
Table 1 AMS14C age results of the ZL section表1 中梁剖面(ZL)AMS14C年代结果 |
Beta实验室编号 | 样品编号 | 深度/cm | 测年材料 | 测定年龄/a B.P. | 校正年龄/cal. a B.P. (概率范围/%) |
Beta-595444 | ZL-1 | 30 | 有机沉积物 | 3390±30 | 3702—3560(92.6) |
Beta-595445 | ZL-2 | 80 | 有机沉积物 | 4980±30 | 5753—5601(88.6) |
Beta-595446 | ZL-3 | 130 | 有机沉积物 | 6110±30 | 7032—6888(72.4) |
Beta-595447 | ZL-4 | 180 | 有机沉积物 | 5190±30 | 5999—5902(95.4) |
Beta-595448 | ZL-5 | 230 | 有机沉积物 | 6860±30 | 7756—7615(92.9) |
Beta-595502 | ZL-6 | 280 | 有机沉积物 | 9380±30 | 10692—10510(95.4) |
Fig. 3 Variations of different proxies (magnetic susceptibility and elemental compositio) in the ZL section since the Last Deglaciation图3 中梁剖面黄土沉积末次冰消期以来不同指标变化特征 χlf为低频磁化率;χfd%为百分比频率磁化率;YD为新仙女木事件;I、II、III、IV分别为第I阶段[(16.6—11.6)ka B.P.]、第II阶段[(11.6—8.2)ka B.P.]、第III阶段[(8.2—4.2)ka B.P.]、第IV阶段(~4.2 ka B.P.以后) |
[1] |
Weiss H, Bradley R S. What drives societal collapse?[J]. Science, 2001, 291(5504): 609-610.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
Kutzbach J E. Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9 000 years ago[J]. Science, 1981, 214(4516): 59-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
An Z S, Porter S C, Kutzbach J E et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8): 743-762.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Chen F H, Xu Q H, Chen J H et al. East Asian Summer Monsoon precipitation variability since the Last Deglaciation[J]. Scientific Reports, 2015, 5: 11186.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
Dong G H, Jia X, An C B et al. Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China[J]. Quaternary Research, 2012, 77(1): 23-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Wang Y J, Cheng H, Edwards R L et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Wang Y J, Cheng H, Edwards R L et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224 000 years[J]. Nature, 2008, 451(7182): 1090-1093.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
Lu H Y, Yi S W, Liu Z Y et al. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing[J]. Geology, 2013, 41(9): 1023-1026.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
Beck J W, Zhou W J, Li C et al. A 550 000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877-881.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Wang H, Chen J, Zhang X et al. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian Summer Monsoon: Evidence for a mid-Holocene maximum[J]. Quaternary International, 2014, 334: 155-164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Kang S G, Du J H, Wang N et al. Early Holocene weakening and mid-to late Holocene strengthening of the East Asian Winter Monsoon[J]. Geology, 2020, 48(11): 1043-1047.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
Xiao J L, Xu Q H, Nakamura T et al. Holocene vegetation variation in the Daihai Lake region of north-central China:A direct indication of the Asian monsoon climatic history[J]. Quaternary Science Reviews, 2004, 23: 1669-1679.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
Shen J, Liu X Q, Wang S M et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18 000 years[J]. Quaternary International, 2005, 136: 131-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
Li J Y, Dodson J, Yan H et al. Quantitative precipitation estimates for the northeastern Qinghai-Xizang Plateau over the last 18 000 years[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5132-5143.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
Peng J, Wang X L, Yin G M et al. Accumulation of aeolian sediments around the Tengger Desert during the late Quaternary and its implications on interpreting chronostratigraphic records from drylands in north China[J]. Quaternary Science Reviews, 2022, 275: 107288.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Yang X L, Liu R K, Zhang R et al. A stalagmite δ18O record from Jinfo Cave, southern China reveals early-mid Holocene variations in the East Asian Summer Monsoon[J]. Quaternary International, 2020, 537: 61-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Tao J, Chen M T, Xu S Y. A Holocene environment record from the southern Yangtze River Delta, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230: 204-229.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
Wang S, Lü H, Li J et al. The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China[J]. Chinese Science Bulletin, 2007, 52: 2829-2836.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
蔡永立, 陈中原, 章薇, 等. 孢粉-气候对应分析重建上海西部地区8.5 ka B.P.以来的气候[J]. 湖泊科学, 2001, 13(2): 118-126.
Cai Yongli, Chen Zhongyuan, Zhang Wei et al. Climate fluctuation of the western Shanghai district by correspondence analysis since 8.5 ka B. P. Journal of Lake Sciences, 2001, 13(2): 118-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
Xie S C, Evershed R P, Huang X Y et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
石天宇, 张样洋, 翟秋敏, 等. 临汾盆地晚冰期至中全新世黄土-古土壤序列的风化特征及指示的气候意义[J]. 海洋地质与第四纪地质, 2023, 43(2): 181-191.
Shi Tianyu, Zhang Yangyang, Zhai Qiumin et al. Characteristics of weathering of the loess-paleosol sequences in the Late Glacial Period to Middle Holocene in Linfen Basin and implication for climatic significance. Marine Geology & Quaternary Geology, 2023, 43(2): 181-191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
Ramsey C B, Dee M W, Rowland J M et al. Radiocarbon-based chronology for dynastic Egypt[J]. Science, 2010, 328(5985): 1554-1557.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
Reimer P J, Baillie M G L, Bard E et al. IntCal 04 terrestrial radiocarbon age calibration, 0—26 cal kyr B. P. [J]. Radiocarbon, 2004, 46(3): 1029-1058.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Song Y G, Lai Z P, Li Y et al. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015, 30: 405-410.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Liu Q S, Deng C L, Torrent J et al. Reviews on recent development of mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3-4): 368-385.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048.
Liu Qingsong, Deng Chenglong. Magnetic susceptibility and its environmental significances. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
Zhou L P, Oldfield F, Wintle A G et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346: 737-739.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究, 1990, 3(1): 42-50.
Liu Xiuming, Liu Dongsheng, Heller F et al. Frequency-dependent susceptibility of loess and Quaternary paleoclimate. Quaternary Sciences, 1990, 3(1): 42-50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
Chen F, Wu D, Chen J et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Xizang Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
Chen J, An Z S, John H. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130 000 years and their implications for monsoon paleoclimatology[J]. Quaternary Research, 2017, 51(3): 215-219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
管清玉. 末次冰期旋回气候高度不稳定性研究[D]. 兰州: 兰州大学, 2006.
Guan Qingyu. A study of the highly unstable climate in Last Glacial Eycle. Lanzhou: Lanzhou University, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
田庆春, 郝晓龙, 韩军青, 等. 临汾盆地黄土沉积微量元素地球化学特征及其气候意义[J]. 干旱区资源与环境, 2022, 36(5): 87-93.
Tian Qiangchun, Hao Xiaolong, Han Junqing et al. Geochemical characteristics and climatic significance of trace elements in loess of Linfen Basin. Journal of Arid Land Resources and Environment, 2022, 36(5): 87-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
庞奖励, 黄春长. 陕西五里铺黄土剖面中微量元素地球化学特征[J]. 长春科技大学学报, 2001, 31(2): 180-184.
Pang Jiangli, Huang Chunchang. Geochemical characters of trace elements in the Wulipu loess-paleosoil section, Shaanxi Province. Journal of Changchun University of Science and Technology, 2001, 31(2): 180-184.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
Bond G C, Showers W, Cheseby M et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
Fleitmann D, Mudelsee M, Burns S J et al. Evidence for a widespread climatic anomaly at around 9.2 ka before present[J]. Paleoceanography and Paleoclimatology, 2008, 23(1): PA1102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
白益军, 张平中, 高涛, 等. 亚洲夏季风5 400 a B. P. 极端减弱事件与文化演变[J]. 中国科学: 地球科学, 2017, 47(5): 554-566.
Bai Yijun, Zhang Pingzhong, Gao Tao et al. The 5 400 a B. P.extreme weakening event of the Asian Summer Monsoon and cultural evolution. Science China Earth Sciences, 2017, 47(5): 554-566.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
Tan L C, Li Y L, Wang X Q et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
Wang Y B, Liu X Q, Herzschuh U. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia[J]. Earth-Science Reviews, 2010, 103(3-4): 135-153.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
Dykoski C A, Edwards R L, Cheng H et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10: 297-317.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
Liu J B, Shen Z W, Chen W et al. Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake[J]. International Journal of Climatology, 2021, 41(3): 1667-1681.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
Liu Z Y, Wen X Y, Brady E C et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
Clemens S C, Prell W L, Sun Y B et al. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian Summer Monsoons:Reinterpreting cave speleothem δ18O[J]. Paleoceanography and Paleoclimatology, 2010, 25(4): PA4207.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
Liu X K, Liu J B, Chen S Q et al. New insights on Chinese cave δ18O records and their paleoclimatic significance[J]. Earth-Science Reviews, 2020, 207: 103216.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
Zhang H W, Zhang X, Cai Y J et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian Summer Monsoon[J]. Quaternary Science Reviews, 2021, 261: 106911.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42(3-4): 1067-1077.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
Yang X L, Liu J B, Liang F Y et al. Holocene stalagmite δ18O records in the East Asian monsoon region and their correlation with those in the Indian monsoon region[J]. The Holocene, 2014, 24: 1657-1664.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
Sun Y B, Clemens S C, Morrill C et al. Influence of Atlantic meridional overturning circulation on the East Asian Winter Monsoon[J]. Nature Geoscience, 2012, 5: 46-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
Chen J, Huang W, Jin L Y et al. A climatological northern boundary index for the East Asian Summer Monsoon and its interannual variability[J]. Science China Earth Sciences, 2018, 61(1): 13-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
Herzschuh U, Cao X Y, Laepple T et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China[J]. Nature Communications, 2019, 10(1): 1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |