Variations of the East Asian Summer Monsoon since the Last Deglaciation recorded by loess deposits in the Linfen Basin

Chen Jie, Yin Jianan, Tian Qingchun

GEOGRAPHICAL SCIENCE ›› 2025, Vol. 45 ›› Issue (2) : 415-424.

PDF(2474 KB)
PDF(2474 KB)
GEOGRAPHICAL SCIENCE ›› 2025, Vol. 45 ›› Issue (2) : 415-424. DOI: 10.13249/j.cnki.sgs.20230852

Variations of the East Asian Summer Monsoon since the Last Deglaciation recorded by loess deposits in the Linfen Basin

Author information +
History +

Abstract

As an important part of global climate systems, the East Asian Summer Monsoon (EASM) and its variations are the focus of academic research. The associated precipitation is closely related to socio-economic development of East Asia, affecting on the production and life of billions of populations. It is thus important to investigate the variability of the EASM on various time-scales and to explore its underlying forcing mechanisms. However, monsoon precipitation over China exhibits large spatial differences, based on reconstructions from various types of paleoclimatic archives and proxies. An enhanced EASM is characterized by increased rainfall in northern China and by reduced rainfall in southern China, with this relationship occurring on different time scales during the Holocene. Moreover, the stability of the EASM during Holocene and the timing of the Holocene climatic optimum throughout its dominated regions remains controversial. These pending questions fundamentally limit our further understanding of the evolution of human-environment interactions and the prediction of long-term trends of regional and global climate in the context of global warming. The Linfen Basin is situated on the southeastern margin of the Chinese Loess Plateau, belonging to a transitional zone between semi-arid and semi-humid region and being sensitive to EASM variation. In this study, we chose Zhong Liang (ZL) loess section in the Linfen Basin as research object to reconstruct the variation of the EASM since the Last Deglaciation, by using paleomagnetic dating providing age control and utilizing magnetic susceptibility and elemental composition proxies reconstructing the variability of the EASM since the Last Deglaciation. The results show that a series of short-term climate fluctuation events have been recorded by magnetic susceptibility and elemental composition of ZL section since the Last Deglaciation, such as the Younger Dryas (YD), 10.2 ka B.P., 9.2 ka B.P. and 4.2 ka B.P. cooling event. However, the 8.2 ka B.P. cooling event was not evident in this region. These observations suggest the climate of Linfen Basin varies with global features of millennial-scale and high-frequency oscillation since the Last Deglaciation, meanwhile affected by regional climate changes. Generally, the EASM shows a continuous enhancement from 16.6 to 6.0 ka B.P., in which reaches a maximum during (7.6—6.0) ka B.P., and then a fluctuated declining trend after 6 ka B.P. Moreover, the EASM variation generally matches that of insolation during the middle Holocene, whilst lags that of insolation during the early Holocene, suggesting the evolution of the EASM was mainly controlled by the Northern Hemisphere summer insolation on orbital timescale, and meanwhile modulated by high-latitude Northern Hemisphere ice volume. Due to the Atlantic Meridional Overturning Circulation (AMOC) changes caused by the injection of global ice volume during the Last Deglaciation and early Holocene, variation and intensity of the EASM was suppressed to lag the response of Northern Hemisphere summer insolation during the early Holocene, and to cause the evident weakness of the EASM during YD and 9.2 ka B.P. period.

Key words

Linfen Basin / loess deposits / East Asian Summer Monsoon / Holocene / Last Deglaciation

Cite this article

Download Citations
Chen Jie, Yin Jianan, Tian Qingchun. Variations of the East Asian Summer Monsoon since the Last Deglaciation recorded by loess deposits in the Linfen Basin[J]. GEOGRAPHICAL SCIENCE, 2025, 45(2): 415-424 https://doi.org/10.13249/j.cnki.sgs.20230852

全新世(Holocene)以来地球经历了一系列全球性的变化过程,其中,最为突出的就是人类文明的诞生及其兴衰[1]。而作为全球气候系统中的重要组成部分,东亚夏季风及其变化过程与驱动机制对本区及周边地区地理环境都产生了重要的影响[2-4],尤其是全新世亚洲夏季风的几次衰退事件对新石器文化演变产生了重大影响[3,5]。此外,东亚夏季风强弱变化引起的降水空间分布格局改变还影响着亚洲大陆数10亿人口的生产生活[3-4]。因此,准确认识东亚夏季风的变化特征,尤其是地质历史时期的变化特征,不仅是全球变化研究的重点内容,也可以为预测未来气候变化、长远生态发展以及未来协调人地关系发展提供有力的科学支撑。
已有研究显示全新世东亚夏季风强度存在一定的时空差异[3]。以Wang等[6-7]为代表的石笋研究发现全新世以来石笋 δ18O值呈现逐渐偏正趋势,指示全新世东亚夏季风逐渐减弱,早全新世东亚夏季风强度最大;而北方地区包括黄土[8-11]、湖泊[4,12-14]、以及季风边缘区的风沙沉积[15]等记录整体显示东亚夏季风强度最大时期出现在中全新世。此外,即使在相同区域,全新世东亚夏季风最强时段也存在分歧。如中国南方地区一部分沉积记录显示中全新世东亚夏季风最强[16-17],但也有研究认为早全新世东亚夏季风强度最大[18-20]
鉴于全新世气候的不稳定性及东亚夏季风最强时期起止时间的争议,本文通过黄土高原东南缘临汾盆地的黄土沉积记录对全新世早中期东亚夏季风波动特征及最强时期的时间范围进行了探讨。试图回答:全新世东亚夏季风最强盛期出现在早全新世还是中全新世;不同区域全新世早中期气候波动是否一致;全新世东亚夏季风演化的驱动因素。

1 研究区概况

地处黄土高原东南缘的临汾盆地是山西地堑南段一断陷盆地,东部与太岳山-中条山相连,西部与吕梁山接壤(图1)。盆地内以冲积平原为主,周边分布有基岩山地、黄土台地以及黄土丘陵等。汾河是这一盆地内最大的河流,为黄河第二大支流。盆地处于半干旱、半湿润的温带大陆性季风气候区,夏季潮湿多雨,冬季寒冷干燥,年平均气温为12~14℃,年降水量大约为550 mm,并且超过90%的降水集中在5—9月[21]
Fig. 1 Location of the Linfen Basin and ZL section

图1 临汾盆地及中梁剖面位置

Full size|PPT slide

中梁剖面(ZL,111°28′15″ E、35°53′50″ N,海拔504 m)出露于塔儿山山前黄土台地,厚度约4.2 m,未见底(图2)。野外采样过程中,先挖去剖面表层风化土壤,露出新鲜剖面,后按2 cm间距采集样品210个,按50 cm间距采集AMS14C年代样品6个。
Fig. 2 Photograph and lithology of the ZL section, as well as relationship between AMS14C ages and depth

图2 中梁剖面(ZL)照片、岩性及AMS14C年龄-深度关系

Full size|PPT slide

2 样品与方法

AMS14C测试在Beta实验室完成。使用OxCal 4.4软件和IntCal 20数据进行校正,得到校正后日历年龄[22-23]。磁化率测量使用英国Bartington公司生产的MS2型磁化率仪。将自然风干、松散的土样置于研钵中研磨后,装入体积为(2×2×2) cm3无磁性方形塑料盒进行测量。对每个样品分别在高频(4.7 kHz)和低频(0.47 kHz)状态下重复测试3次,取其平均值得到高频磁化率(χhf)和低频磁化率(χlf),最后计算百分比频率磁化率χfd%=([(χlf -χhf)/χlf]×100%。微量元素测量使用美国Thermo Fisher Scientific公司的ICAP 7000系列电感耦合等离子体发射光谱仪谱(Inductively Coupled Plasma Optical Emission Spectrometer,简称ICP-OES)。称取自然风干样品0.2 g,依次加入6 mL的HNO3、2 mL的HF以及2 mL的HCL,用微波消解仪进行消解、用赶酸仪进行赶酸,冷却至室温,最后再用2%的 HNO3定容至50 mL 容量瓶待测。以上样品的测试均在山西师范大学地理科学学院环境分析实验完成。

3 结果与分析

3.1 剖面地层及年代学分析

根据野外观察和地层变化将中梁剖面自上而下划分为5层(图2):1层,0~20 cm为耕作层Ts,含有植物根系,结构疏松;2层,20~60 cm,黄土层L0,呈浅黄色,疏松多孔;3层,60~260 cm,古土壤层S0,呈浅褐红色,土质密实,土壤团粒结构明显,可细分为3层,上层为弱古土壤,颜色随深度逐渐加深,中间层为深红色古土壤,下层为弱古土壤,颜色逐渐变浅;4层,260~290 cm,过渡层Lt,呈浅黄色,粗颗粒含量逐渐增加;5层,290~420 cm黄土层L1,呈浅黄色,质地松散,粗颗粒含量较多。
中梁剖面AMS14C样品测定年龄见表1。由于ZL-2、ZL-3概率范围低于90%,且相比于下部的ZL-4存在年龄倒置,不符合地层沉积层序规律,予以剔除。黄土沉积过程中侵蚀再沉积、生物扰动以及采样时新、老碳的混合都会导致AMS14C年龄出现倒置[24],具体原因需进一步分析。因此,本文将ZL-1、ZL-4、ZL-5和ZL-6共4个校正年龄作为控制点,根据年龄深度回归方程线性外推得到不同深度的年龄,建立了中梁剖面黄土-古土壤序列年龄与地层深度的关系(图2)。
Table 1 AMS14C age results of the ZL section

表1 中梁剖面(ZL)AMS14C年代结果

Beta实验室编号 样品编号 深度/cm 测年材料 测定年龄/a B.P. 校正年龄/cal. a B.P.
(概率范围/%)
Beta-595444 ZL-1 30 有机沉积物 3390±30 3702—3560(92.6)
Beta-595445 ZL-2 80 有机沉积物 4980±30 5753—5601(88.6)
Beta-595446 ZL-3 130 有机沉积物 6110±30 7032—6888(72.4)
Beta-595447 ZL-4 180 有机沉积物 5190±30 5999—5902(95.4)
Beta-595448 ZL-5 230 有机沉积物 6860±30 7756—7615(92.9)
Beta-595502 ZL-6 280 有机沉积物 9380±30 10692—10510(95.4)

3.2 环境代用指标的气候意义

1)剖面磁化率与频率磁化率特征。图3为中梁剖面低频磁化率和百分比频率磁化率变化。8.2 ka B.P.前磁化率波动幅度较小,平均值小于80×10-8 m3/kg,(8.2—4.2) ka B.P.期间达到峰值,平均值约为150×10-8 m3/kg,4.2 ka B.P.之后磁化率值明显降低。百分比频率磁化率的变化特征与磁化率基本一致,但波动更为明显。磁化率作为黄土-古土壤成壤强度的代用指标,反映的是样品磁性整体信息[25],但其受到磁性矿物的来源、类型及含量等影响,在指示气候变化过程中存在局限性[26-27]。超顺磁颗粒(<0.03 μm)由于高频磁场的影响发生磁滞而被阻挡,所以对高频质量磁化率没有贡献。因此,可以用百分比频率磁化率来近似反映样品中超顺磁颗粒的存在和相对含量[27]。此外,由于细颗粒铁磁性矿物的生成受气候环境的影响:即暖湿程度越高越有利于超顺磁晶粒的形成,并且暖湿程度持续时间越长,形成的越多[28]。因此,在一定程度上百分比频率磁化率比低频磁化率更能灵敏的捕捉气候波动,可以指示土壤成壤强度以及气候的次一级变化过程[28-29]
Fig. 3 Variations of different proxies (magnetic susceptibility and elemental compositio) in the ZL section since the Last Deglaciation

图3 中梁剖面黄土沉积末次冰消期以来不同指标变化特征

χlf为低频磁化率;χfd%为百分比频率磁化率;YD为新仙女木事件;I、II、III、IV分别为第I阶段[(16.6—11.6)ka B.P.]、第II阶段[(11.6—8.2)ka B.P.]、第III阶段[(8.2—4.2)ka B.P.]、第IV阶段(~4.2 ka B.P.以后)

Full size|PPT slide

2)剖面Ba、Sr、Co、Ge、Mn、Zn及Ba/Sr变化特征。不同元素含量变化见图3。Ba和Sr在8.2 ka B.P.之前整体上含量较高,平均值分别为524 mg/kg和135 mg/kg;(8.2—4.2) ka B.P.二者的平均值分别为491 mg/kg 和107 mg/kg;4.2 ka B.P.之后二者的含量明显增多。Ba/Sr、Co、Ge、Mn、Zn在8.2 ka B.P.前都处于低值,(8.2—4.2) ka B.P.含量达到最大,4.2 ka B.P.之后呈现下降趋势。黄土-古土壤序列中地球化学元素的迁移或富集主要受控于沉积后气候环境变化引起的成壤作用,其大致可分为2类:一类是相对可溶的碳酸盐矿物成分;如Sr元素主要以游离形式存在,容易被淋溶,因此黄土-古土壤地层中Sr含量的高低可以反映降水量的多少及东亚夏季风的强弱[30-31]。此外,由于Ba和Sr元素吸附能力存在差异,因此也可以用Ba/Sr比来反映气候环境的变化,当比值增大时表明气候较为暖湿,反之则较为冷干[31]。另一类是难溶解的矿物;如Co、Ge、Mn、Zn主要是受黏粒吸附而富集的元素,其值越高表明成壤作用越强,气候暖湿程度越大[32-33]

4 讨论

4.1 中梁黄土记录的早中全新世东亚夏季风波动特征

综合分析各指标的变化特征(图3),可将该地区气候演化划分为4个阶段:
第I阶段[(16.6—11.6) ka B.P.],低频磁化率、百分比频率磁化率整体上为低值,Co、Ge、Zn、Mn含量呈现波动增加趋势,Ba、Sr含量处于整个序列的高值段,Ba/Sr值存在小幅波动,整体上值比较低,指示这一时段淋溶作用不强,降水量较少,表明这一时期东亚夏季风整体强度很弱。其中在(~14.6—12.6) ka B.P.,磁化率、百分比频率磁化率出现一个小的峰值,Ba、Sr含量略有降低,表明此时淋溶强度稍有增强,降水量略有增加,时间上与波令-阿勒罗德(B-A)暖期后半段相对应。在(~12.6—11.6) ka B.P.低频磁化率和百分比频率磁化率出现低值,Sr含量较高且有小幅波动,Ba/Sr值最低,Co、Ge、Mn、Zn含量偏低,其中Co、Mn、Zn含量达到整个序列的最低值,指示此时期淋溶作用微弱,降水量少,气候不稳定,是一次东亚夏季风减弱时段,时间上与新仙女木事件(YD)一致[34]
第II阶段[(11.6—8.2) ka B.P.],低频磁化率、百分比频率磁化率呈现逐渐增大的趋势,表明这一时期土壤发育程度逐渐增强,降水量增加,从而导致土壤的淋溶强度也逐渐增强。土壤中的Sr和Ba开始淋溶,含量逐渐降低,但Ba淋溶强度要比Sr弱,因此Ba/Sr值表现出增大趋势(图3)。Co、Ge、Mn、Zn含量呈现波动增加趋势,且幅度较大,表明该时期淋溶作用加强,东亚夏季风强度逐渐增加,但气候不稳定,尤其在11.1 ka B.P.、10.3 ka B.P.、9.4 ka B.P.和8.7 ka B.P.附近Co、Ge、Mn、Zn含量出现较大的谷值,表明存在短暂的夏季风减弱事件,这可能与北半球11.2 ka B.P.、10.3 ka B.P.、9.2 ka B.P.新冰期的降温事件有关[34],其中9.2 ka B.P.冷事件正好与海洋沉积所记录到的降温事件相一致[35];中梁剖面黄土沉积记录到在8.7 ka B.P.左右存在1次弱季风事件,8.2 ka B.P.并没有明显的季风减弱现象,这一结果与Chen等[4]对山西公海的研究结果一致。
第III阶段[(8.2—4.2) ka B.P.],低频磁化率、百分比频率磁化率呈现为高值,表明这一时期土壤较为发育,Ba和Sr含量达到最低值,但Ba/Sr值最高,Co、Ge、Mn、Zn含量达到整个序列的最高值,这些元素特征变化表明这一时期淋溶强度大,东亚夏季风最为强盛;该时期又可划分为2个阶段:(8.2—6.0) ka B.P. 低频磁化率虽内部出现小幅波动,但达到整个序列的最大值,表明这一时段土壤最为发育,降水量最大,东亚夏季风强度达到最大;(6.0—4.2) ka B.P. 低频磁化率呈降低的趋势,百分比频率磁化率比上一时段有所降低,但值仍较高。Ba/Sr值也呈降低趋势,Co、Ge、Mn、Zn含量呈现波动下降趋势,表明从6.0 ka B.P.东亚夏季风强度逐渐减弱,尤其在~5.5 ka B.P.出现一个较为明显的低谷,这一时段世界各地均出现了一次较为明显的降温事件[2,36],亚洲夏季风明显减弱[36]。~4.2 ka B.P.各指标都呈现快速降低的趋势,温度和降水量都明显下降,环境恶化,黄土高原西部的洞穴石笋也记录到此次弱季风事件[37]。总体来讲,(6.0—4.2) ka B.P.这一阶段东亚夏季风强度呈下降趋势,且在5.5 ka B.P.和4.2 ka B.P.可能存在2次弱季风事件。
第IV阶段(~4.2 ka B.P.以后):经过4.2 ka B.P.降温事件后,低频磁化率、百分比频率磁化率处于低值,波动幅度较小;Ba和Sr含量及Ba/Sr值都比较小,说明此时成壤强度较弱,东亚夏季风强度较弱。与上一阶段相比,这一时期东亚夏季风的强度明显减弱,中国北方季风区气候开始恶化,逐渐变得寒冷干燥[9]

4.2 中梁剖面黄土记录的早中全新世东亚夏季风变化与其他地质记录对比

中梁剖面黄土-古土壤磁化率及元素结果显示东亚夏季风EASM最强时段出现在中全新世。尽管不同研究存在年代学的不确定以及分辨率有限等问题,但在黄土高原其它区域也表现出相似的东亚夏季风EASM变化特征(图4)。如Lu等[8]通过对榆林剖面磁化率的分析显示中全新世[(8—3) ka B.P.]磁化率值最高,说明中全新世成壤强度最大(图4d);Beck等[9]利用宝鸡黄土10Be通量重建的降水量指示中全新世最大,暗示东亚夏季风EASM在中全新世最强(图4c);此外,Kang等[11]运用高分辨率释光测年建立了黄土高原中南部3个剖面自全新世以来东亚夏季风变化,发现东亚夏季风EASM在早中全新世[(11.7—6.5) ka B.P.]逐渐增强,6.5 ka B.P.后开始减弱;在统计了黄土高原已发表的77个具有独立实测年龄的黄土剖面后,Wang等[10]发现(8.8—3.4) ka B.P.这一时期发育有大量古土壤,表明东亚夏季风EASM在黄土高原地区全新世中期普遍较强;Wang等[38]通过主成分分析合成的东亚夏季风EASM指数也显示中全新世东亚夏季风最强(图4g)。此外,Chen等[4]利用公海湖泊沉积中孢粉组合反演的降水量最大时段均出现在中全新世(图4e);类似的研究结果也出现在季风边缘区的岱海[12]及青海湖-达里海湖[14]的孢粉综合重建的降水量(图4f、h)。同时,来自夏季风边界的中国北方风成沉积研究则表明风沙活动在(7—3) ka B.P.减弱[15]。综上所述,虽然不同记录在全新世东亚夏季风EASM最强时期开始和结束时间上有所差异,但整体上中国北方季风区基于多种气候代用指标重建的东亚夏季风EASM都显示全新世中期最强。
Fig. 4 Comparisons between ZL section and different EASM records

图4 中梁剖面与季风区其它地质记录对比

a.中梁剖面黄土百分比频率磁化率(χfd %);b.中梁剖面黄土Ba/Sr比值;c.宝鸡黄土10Be重建降水量[9];d.榆林黄土磁化率[8];e.公海孢粉重建降水量[4];f.岱海孢粉重建降水量[12];g.主成分分析合成的东亚夏季风EASM指数[38];h.青海湖-达连海湖孢粉综合重建降水量[14];i.三宝洞石笋δ18O值[7];j.董哥洞石笋δ18O值[39];k.北半球夏季太阳辐射量[40]

Full size|PPT slide

然而,中国南方地区却表现出与其相反的气候特征。位于广东湛江的湖光岩玛珥湖孢粉记录显示(9.5—8) ka B.P.东亚夏季风最强[18],上海西部地区孢粉结果也显示在约(7.3—6.0) ka B.P.左右常绿木本种类含量降低,表明此时较前一阶段暖湿程度有所下降[19];中国南方泥炭和石笋记录显示末次冰期以来存在的3个较长湿润期分别为:(13—11.5) ka B.P.、(9.5—7.0) ka B.P.和(3.0—1.5) ka B.P.,而(7.0—3.0) ka B.P.时段气候整体处于干旱状态[20]。尽管如此,这些结果可能并不反映东亚夏季风EASM区域差异或者减弱,更有可能指示东亚夏季风EASM的增强。前人研究结果表明东亚夏季风EASM强度增大时,季风雨带位置偏北,从而使中国北方降水增多,南方降水减少;反之,则中国北方降水减少,南方增多[4,41]。这与Liu等[42]发现的全新世千年尺度上中国季风区北部和南部呈现出相反的降雨模式相符,并认为中国北方地区降水量的大小可指示东亚夏季风的强度。
此外,中国南方石笋记录到的东亚夏季风变化也表现出不同的演化模式。三宝洞石笋δ18O[7]和董哥洞石笋δ18O[39] 显示全新世以来变化趋势基本相同,呈现逐渐偏正的趋势(图4i-j),表明石笋记录的东亚夏季风变化在早全新世强度最大,中全新世逐渐减小。由于石笋δ18O记录的东亚夏季风变化与北方地区其它沉积记录的东亚夏季风变化存在不一致,因此关于东亚地区石笋δ18O值变化的驱动机制仍存在很大争议,认为石笋δ18O值的变化可能反映水汽来源而不是季风强度[43-44]。如Zhang[45]等通过对江西省北部神农洞石笋δ18O记录及降水和大气δ18O的模型数据认为石笋δ18O很大程度上受控于季风雨带大规模环流和纬度的变化;Tan[46]的研究表明香港地区年降水量与大气降水δ18O之间没有相关性。来自不同地区石笋δ18O记录表现出明显的相关性[47],但与千年尺度上中国季风区北部和南部呈现出相反的降雨模式不一致[42]。因此,本研究结果支持北方地区降水量能反映东亚夏季风强度,而石笋δ18O 值并不能直接反映东亚夏季风降水量大小,可能更多指示大尺度的环流信号。
综上,东亚夏季风在中全新世最强。中全新世以来东亚夏季风演化基本上与北半球夏季太阳辐射相一致[40]图4k),意味着东亚夏季风演化主要受控于北半球夏季太阳辐射变化。然而,早全新世东亚夏季风演化与太阳辐射表现出不一致的特征,存在约4 ka的滞后(图4)。相比中全新世,早全新世最主要的特征是北半球高纬地区存在大规模冰量。Chen等[4]和Lu等[8]认为早全新世北半球高纬冰盖及冰盖融水注入北大西洋,削弱了北大西洋经向翻转环流(AMOC),从而抑制了东亚夏季风的强度,促使其最强时段滞后于北半球夏季太阳辐射。因此,东亚夏季风变化受到太阳辐射和北半球冰盖的共同影响:早全新世太阳辐射最强,但此时受到北半球冰盖的影响,致使东亚夏季风强度增加缓慢;随着冰盖的逐渐减小,太阳辐射的作用越来越明显,东亚夏季风强度也逐渐增加。中全新世及以后,随着太阳辐射逐渐减小,东亚夏季风强度也逐渐减弱。这一过程中中纬度西风带可能起到了重要作用,将北半球高纬地区与东亚季风区联系起来[48],其强度大小对东亚夏季风起到促进或抑制作用[49-50] 。临汾盆地中梁剖面黄土沉积以及东亚季风区的其它地质记录均表现出的几次弱季风事件,如新仙女木事件、9.2 ka B.P.等弱季风事件,正好对应于北高纬的降温事件,表明北高纬气候变化对东亚夏季风有重要的调控作用。

5 结论

1) 临汾盆地16 ka B.P.以来东亚夏季风强度呈现增强的趋势,在约6.0 ka B.P.达到最大值,6.0 ka B.P.之后东亚夏季风呈现衰退趋势;全新世中期[(8.2—4.2) ka B.P.]夏季风强度最大,其中在(7.6—6.0) ka B.P.最为强盛。
2) 16 ka B.P.以来,东亚季风区夏季风变化整体是一致的,且存在如新仙女木YD事件、11.1 ka B.P.、10.3 ka B.P.、9.2 ka B.P.、5.5 ka B.P.和4.2 ka B.P.等一系列弱季风事件,表明全新世气候变化的不稳定性。
3) 早全新世可能受到北半球冰融水影响,虽然此时太阳辐射最强,但东亚夏季风强度增加缓慢,随着冰盖的逐渐减小,太阳辐射的作用越来越明显,东亚夏季风强度也逐渐增强。中全新世及以后,随着太阳辐射逐渐减小,东亚夏季风强度也逐渐减弱。东亚夏季风变化受到太阳辐射和北半球冰盖的共同影响。

References

[1]
Weiss H, Bradley R S. What drives societal collapse?[J]. Science, 2001, 291(5504): 609-610.
[2]
Kutzbach J E. Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9 000 years ago[J]. Science, 1981, 214(4516): 59-61.
[3]
An Z S, Porter S C, Kutzbach J E et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8): 743-762.
[4]
Chen F H, Xu Q H, Chen J H et al. East Asian Summer Monsoon precipitation variability since the Last Deglaciation[J]. Scientific Reports, 2015, 5: 11186.
[5]
Dong G H, Jia X, An C B et al. Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China[J]. Quaternary Research, 2012, 77(1): 23-30.
[6]
Wang Y J, Cheng H, Edwards R L et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[7]
Wang Y J, Cheng H, Edwards R L et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224 000 years[J]. Nature, 2008, 451(7182): 1090-1093.
[8]
Lu H Y, Yi S W, Liu Z Y et al. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing[J]. Geology, 2013, 41(9): 1023-1026.
[9]
Beck J W, Zhou W J, Li C et al. A 550 000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877-881.
[10]
Wang H, Chen J, Zhang X et al. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian Summer Monsoon: Evidence for a mid-Holocene maximum[J]. Quaternary International, 2014, 334: 155-164.
[11]
Kang S G, Du J H, Wang N et al. Early Holocene weakening and mid-to late Holocene strengthening of the East Asian Winter Monsoon[J]. Geology, 2020, 48(11): 1043-1047.
[12]
Xiao J L, Xu Q H, Nakamura T et al. Holocene vegetation variation in the Daihai Lake region of north-central China:A direct indication of the Asian monsoon climatic history[J]. Quaternary Science Reviews, 2004, 23: 1669-1679.
[13]
Shen J, Liu X Q, Wang S M et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18 000 years[J]. Quaternary International, 2005, 136: 131-140.
[14]
Li J Y, Dodson J, Yan H et al. Quantitative precipitation estimates for the northeastern Qinghai-Xizang Plateau over the last 18 000 years[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5132-5143.
[15]
Peng J, Wang X L, Yin G M et al. Accumulation of aeolian sediments around the Tengger Desert during the late Quaternary and its implications on interpreting chronostratigraphic records from drylands in north China[J]. Quaternary Science Reviews, 2022, 275: 107288.
[16]
Yang X L, Liu R K, Zhang R et al. A stalagmite δ18O record from Jinfo Cave, southern China reveals early-mid Holocene variations in the East Asian Summer Monsoon[J]. Quaternary International, 2020, 537: 61-68.
[17]
Tao J, Chen M T, Xu S Y. A Holocene environment record from the southern Yangtze River Delta, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230: 204-229.
[18]
Wang S, Lü H, Li J et al. The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China[J]. Chinese Science Bulletin, 2007, 52: 2829-2836.
[19]
蔡永立, 陈中原, 章薇, 等. 孢粉-气候对应分析重建上海西部地区8.5 ka B.P.以来的气候[J]. 湖泊科学, 2001, 13(2): 118-126.
Cai Yongli, Chen Zhongyuan, Zhang Wei et al. Climate fluctuation of the western Shanghai district by correspondence analysis since 8.5 ka B. P. Journal of Lake Sciences, 2001, 13(2): 118-126.
[20]
Xie S C, Evershed R P, Huang X Y et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
[21]
石天宇, 张样洋, 翟秋敏, 等. 临汾盆地晚冰期至中全新世黄土-古土壤序列的风化特征及指示的气候意义[J]. 海洋地质与第四纪地质, 2023, 43(2): 181-191.
Shi Tianyu, Zhang Yangyang, Zhai Qiumin et al. Characteristics of weathering of the loess-paleosol sequences in the Late Glacial Period to Middle Holocene in Linfen Basin and implication for climatic significance. Marine Geology & Quaternary Geology, 2023, 43(2): 181-191.
[22]
Ramsey C B, Dee M W, Rowland J M et al. Radiocarbon-based chronology for dynastic Egypt[J]. Science, 2010, 328(5985): 1554-1557.
[23]
Reimer P J, Baillie M G L, Bard E et al. IntCal 04 terrestrial radiocarbon age calibration, 0—26 cal kyr B. P. [J]. Radiocarbon, 2004, 46(3): 1029-1058.
[24]
Song Y G, Lai Z P, Li Y et al. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015, 30: 405-410.
[25]
Liu Q S, Deng C L, Torrent J et al. Reviews on recent development of mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3-4): 368-385.
[26]
刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048.
Liu Qingsong, Deng Chenglong. Magnetic susceptibility and its environmental significances. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048.
[27]
Zhou L P, Oldfield F, Wintle A G et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346: 737-739.
[28]
刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究, 1990, 3(1): 42-50.
Liu Xiuming, Liu Dongsheng, Heller F et al. Frequency-dependent susceptibility of loess and Quaternary paleoclimate. Quaternary Sciences, 1990, 3(1): 42-50.
[29]
Chen F, Wu D, Chen J et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Xizang Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129.
[30]
Chen J, An Z S, John H. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130 000 years and their implications for monsoon paleoclimatology[J]. Quaternary Research, 2017, 51(3): 215-219.
[31]
管清玉. 末次冰期旋回气候高度不稳定性研究[D]. 兰州: 兰州大学, 2006.
Guan Qingyu. A study of the highly unstable climate in Last Glacial Eycle. Lanzhou: Lanzhou University, 2006.
[32]
田庆春, 郝晓龙, 韩军青, 等. 临汾盆地黄土沉积微量元素地球化学特征及其气候意义[J]. 干旱区资源与环境, 2022, 36(5): 87-93.
Tian Qiangchun, Hao Xiaolong, Han Junqing et al. Geochemical characteristics and climatic significance of trace elements in loess of Linfen Basin. Journal of Arid Land Resources and Environment, 2022, 36(5): 87-93.
[33]
庞奖励, 黄春长. 陕西五里铺黄土剖面中微量元素地球化学特征[J]. 长春科技大学学报, 2001, 31(2): 180-184.
Pang Jiangli, Huang Chunchang. Geochemical characters of trace elements in the Wulipu loess-paleosoil section, Shaanxi Province. Journal of Changchun University of Science and Technology, 2001, 31(2): 180-184.
[34]
Bond G C, Showers W, Cheseby M et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
[35]
Fleitmann D, Mudelsee M, Burns S J et al. Evidence for a widespread climatic anomaly at around 9.2 ka before present[J]. Paleoceanography and Paleoclimatology, 2008, 23(1): PA1102.
[36]
白益军, 张平中, 高涛, 等. 亚洲夏季风5 400 a B. P. 极端减弱事件与文化演变[J]. 中国科学: 地球科学, 2017, 47(5): 554-566.
Bai Yijun, Zhang Pingzhong, Gao Tao et al. The 5 400 a B. P.extreme weakening event of the Asian Summer Monsoon and cultural evolution. Science China Earth Sciences, 2017, 47(5): 554-566.
[37]
Tan L C, Li Y L, Wang X Q et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273.
[38]
Wang Y B, Liu X Q, Herzschuh U. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia[J]. Earth-Science Reviews, 2010, 103(3-4): 135-153.
[39]
Dykoski C A, Edwards R L, Cheng H et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86.
[40]
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10: 297-317.
[41]
Liu J B, Shen Z W, Chen W et al. Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake[J]. International Journal of Climatology, 2021, 41(3): 1667-1681.
[42]
Liu Z Y, Wen X Y, Brady E C et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128.
[43]
Clemens S C, Prell W L, Sun Y B et al. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian Summer Monsoons:Reinterpreting cave speleothem δ18O[J]. Paleoceanography and Paleoclimatology, 2010, 25(4): PA4207.
[44]
Liu X K, Liu J B, Chen S Q et al. New insights on Chinese cave δ18O records and their paleoclimatic significance[J]. Earth-Science Reviews, 2020, 207: 103216.
[45]
Zhang H W, Zhang X, Cai Y J et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian Summer Monsoon[J]. Quaternary Science Reviews, 2021, 261: 106911.
[46]
Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42(3-4): 1067-1077.
[47]
Yang X L, Liu J B, Liang F Y et al. Holocene stalagmite δ18O records in the East Asian monsoon region and their correlation with those in the Indian monsoon region[J]. The Holocene, 2014, 24: 1657-1664.
[48]
Sun Y B, Clemens S C, Morrill C et al. Influence of Atlantic meridional overturning circulation on the East Asian Winter Monsoon[J]. Nature Geoscience, 2012, 5: 46-49.
[49]
Chen J, Huang W, Jin L Y et al. A climatological northern boundary index for the East Asian Summer Monsoon and its interannual variability[J]. Science China Earth Sciences, 2018, 61(1): 13-22.
[50]
Herzschuh U, Cao X Y, Laepple T et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China[J]. Nature Communications, 2019, 10(1): 1-8.

Funding

National Natural Science Foundation of China(42201168)
Ministry of Education Humanities and Social Sciences Research Project(23YJAZH135)
Guangdong Basic and Applied Basic Research Foundation(2021A1515110246)
Science and Technology Projects in Guangzhou(202201010425)
Shanxi Provincial Bureau of Cultural Relics Foundation(22-8-14-1400-119)

RIGHTS & PERMISSIONS

Copyright reserved © 2025.
PDF(2474 KB)

129

Accesses

0

Citation

Detail

Sections
Recommended

/