论文

Foliage Physiological Response to Increase of Atmospheric CO2 Concentration Reflected by δ13C Series of Tree Ring in Tianmu Mountains

Expand
  • 1. Geography and Tourism Department of Linyi Teachers’ College, Linyi, Shandong 276005;
    2. College of Geographical Science, Nanjing Normal University, Nanjing, Jiangsu 210097;
    3. Administrative Bureau of Tianmu Mountain National Natural Protection District, Lin’an, Zhejiang 311311;
    4. Lake Sediment and Environment Laboratory, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008

Received date: 2007-10-29

  Revised date: 2008-02-11

  Online published: 2008-09-20

Abstract

The concentration of atmospheric CO2 has been increased due to the CO2 emission with mass fossil-fuel combustion since industrialization.Many studies indicate that the increasing concentration of atmospheric CO2 is significantly positive correlation with the photosynthesis and water use efficiency and production of vegetable is negative correlation with the connectivity of foliage stoma and rate of transpiration.In this study, the annual series of δ13C of three Cryptomeria fortunei Hooibrenk ex Otto et Dietr (CF) tree disks collected from west Tianmu Mountains, based on cross-dating tree ring ages, were determined.We probe into the physiological response for trees’ growth to the increasing concentration of atmospheric CO2 and moisture condition on the basis of the three δ13C series.The result illuminates that the water use efficiency are all increasing reflected by the three trees and the increasing trend is similar approximately.The result elucidates that the tree growth is significant positive with the increasing of atmospheric CO2 concentration before and after the Industrial Revolution.

Cite this article

ZHAO Xing-Yun, WANG Jian, SHANG Zhi-Yuan, WANG Zu-Liang, QIAN Jun-Long . Foliage Physiological Response to Increase of Atmospheric CO2 Concentration Reflected by δ13C Series of Tree Ring in Tianmu Mountains[J]. SCIENTIA GEOGRAPHICA SINICA, 2008 , 28(5) : 698 -702 . DOI: 10.13249/j.cnki.sgs.2008.05.698

References

[1] 史纪安,陈利顶,史俊通,等.榆林地区土地利用/覆被变化区域特征及其驱动机制分析[J].地理科学,2003,23(4):494~499.
[2] 齐玉春,董云社.中国能源领域温室气体排放现状及减排对策研究[J].地理科学,2004,24(5):528~534.
[3] 宋长春,王毅勇,王跃思,等.人类活动影响下淡水沼泽湿地温室气体排放变化[J].地理科学,2006,26(1):82~86.
[4] 秦丽杰,张 郁,许红梅,等.土地利用变化的生态环境效应研究——以前郭县为例[J].地理科学,2002,22(4):508~513.
[5] 吴正方,靳英华,刘吉平,等.东北地区植被分布全球气候变化区域响应[J].地理科学,2003,23(5):564~570.
[6] 王计平,邹欣庆,左 平.基于社区居民调查的海岸带湿地环境质量评价——以海南东寨港红树林自然保护区为例[J].地理科学,2007,27(3):249~255.
[7] 杨红霞,王东启,陈振楼,等.长江口崇明东滩潮间带甲烷(CH4)排放及其季节变化[J].地理科学,2007,27(3):408~413.
[8] 王 娟,崔保山,卢 远.基于生态系统服务价值核算的土地利用规划战略环境评价[J].地理科学,2007,27(4):549~554.
[9] 赵 敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1) :50~54.
[10] Luo Y,Sima D A,Thomas R B,et al.Sensitivity of leaf photosynthesis to CO2 concentration is an invariant function for C3 plants:a test with experimental data and global applications[J].Global Biogeochemic Cycles,1996,10:209-222.
[11] Gunderson C A,Wullscbleger S D.Photosynthetic acclimation in trees to rising atmospheric CO2[J].Plant Cell Environment,1994,15:271-282.
[12] Polley H W,Jonhson H B,Marino B D,et al.Increase in C3 plant water use efficiency and biomass over Glacial to present CO2 concentrations[J].Nature,1993,361:61-64.
[13] Woodward F I,Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels[J].Nature,1987,327:617-618.
[14] Graybill Donald A,B idso Sherwood.Detecting the aerial fertilization effect of atmospheric carbon dioxide enrichment in tree-ring chronologies[J].Global Biogeochemical Cycles,1993,7 (1):81-95.
[15] Feng X.Long-term Ci/Ca responses of trees in Western North America to atmospheric CO2 concentration derived from carbon isotope chronologies[J].Oecologia,1998,117(1):19-25.
[16] 陈 拓,秦大河,李江风,等.从树轮纤维素δ13C序列看树木生长对大气CO2浓度变化的响[J].冰川冻土,2001,23 (1):41~44.
[17] 李正华,刘荣谟,安芷生,等.工业革命以来大气CO2浓度不断增加的树轮稳定碳同位素证据[J].科学通报,1994,39 (23):2172~2174.
[18] 唐劲松,钱君龙,尹卓思,等.用树轮碳同位素年序列重建大气二氧化碳浓度[J].南京林业大学学报,2000,24(3):45~48.
[19] Craig H.Carbon-13 variations in sequoia rings and the atmosphere[J].Science,1954,119:141-143.
[20] 温达志.大气二氧化碳浓度增高与植物水分利用效率[J].热带亚热带植物学报,1997,5(3):83~90.
[21] Farquhar C D,Ehleringer J R,Hubick K T.Carbon isotope discrimination and photosynthesis[J].Ann Rev Plant Physiology,1989,40:503-537.
[22] Ehleringer J R.Carbon and water relations in desert plants:an isotopic perspective[M].//Ehleringer J R,Hall A E & Farquhar G D eds.Stable isotopes and plant carbon water relations.San Diego:Academic Press,1993:155-172.
[23] Farquhar G D,Oleary M H,Berry J A.On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves[J].Aust.J.Physiol.,1982,9:121-137.
[24] 刁明碧,张 霞,饶良臣.理论统计学 [M].北京:中国科学技术出版社,1998:165~170.
[25] Tang K L,Feng X H,Funkhouser G.The δ13C of tree rings in full-bark and strip-bark bristlecone pine trees in the White Mountains of California[J].Global Change Biology,1999,5:33-40.
[26] 朱西德,王振宇,李 林,等.树木年轮指示的柴达木东北缘近千年夏季气温变化[J].地理科学,2007,27(2):256~260.
[27] Powell D R,Klieforth H E.Weather and climate.In:Natural History of the White-Info Range,Eastern California (ed.Hall C.A.Jr)[M].La Jolla,CA:University of California Press,1984:3-24.
[28] O’Leary M H.Carbon fractionation in plants[J].Phytochemistry,1981,20:553-567.
[29] Leavitt S W,Long A.Evidence for 13C/12C fractionation between tree leaves and wood[J].Nature,1982,298:742-744.
Outlines

/