Estimation of Soil Organic Matter Based on Four Methods and Effect of Sampling Number on Estimation Accuracy

Expand
  • 1. National Engineering Research Center for Information Technology in Agriculture, Beijing 100089;
    2. Henan Information Industry Department, Zhengzhou, Henan 450008;
    3. People’s Government Information Office of Henan Province, Zhengzhou, Henan 450008

Received date: 2006-05-18

  Revised date: 2006-10-21

  Online published: 2007-09-20

Abstract

This paper presents four methods for estimating spatial distribution of soil organic matter and examines these methods’sensitivity to the sampling number.The four methods are ordinary kriging(OK),simple linear regression(RG),cokriging(COK),and regression-kriging(RGK).All sampling sites are randomly divided into two groups: interpolation dataset(200 points) and validation dataset(62 points).The organic matter of interpolation subset and alkalizable nitrogen of all observations are used to mapping soil organic matter.Among four methods,ordinary kriging,only using the information of organic matter,yields lowest accurate predictions and smallest proportion of the total variation,while regression-kriging using secondary data(alkalizable nitrogen) yields highest accuracy and largest variation explainable.To examine the effect of sampling number on the performance of four mapping methods,four subsets of 40,80,120,160 sampling sites are randomly selected from the interpolation dataset.For each subset,organic matter is estimated over the study area by four methods,respectively.The results show that the accuracy performances of four methods are RGK>COK>RG>OK.Moreover,the results indicate that the performance of simple linear regression remain stable,and that others perform better when the sample size of organic matter increased.

Cite this article

LI Xiang, PAN Yu-Chun, ZHAO Chun-Jiang, WANG Ji-Hua . Estimation of Soil Organic Matter Based on Four Methods and Effect of Sampling Number on Estimation Accuracy[J]. SCIENTIA GEOGRAPHICA SINICA, 2007 , 27(5) : 689 -694 . DOI: 10.13249/j.cnki.sgs.2007.05.689

References

[1] Lopez Granados F,Jurado Exposito M,Pena Barragan J M,et al.Using geostatistical and remote sensing approaches for mapping soil properties[J].European Journal of Agronomy,2005,23(3):279-289.
[2] Gregorio C,Dobermann S A,Goovserts P,et al.Fine-resolution mapping of soil organic carbon based on multivariate secondary data[J].Geoderma,2006,132(3-4):471-489.
[3] Baxter S J,Oliver M A.The spatial prediction of soil mineral N and potentially available N using elevation[J].Geoderma,2005,128:325-339.
[4] Sullivan D G,Shaw J N,Rickman D.IKONOS imagery to estimate surface soil property variability in two Alabama Physiographies[J].Soil Science Society of America Journal,2005,69:1789-1798.
[5] 王红,刘高焕,宫鹏,等.利用Cokriging提高估算土壤盐离子浓度分布的精度[J].地理学报,2000,60(3):511~518.
[6] Knotters M,Brus D,Voshaar J.A comparison of kriging,cokriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations[J].Geoderma,1995,67:227-246.
[7] Hengl T,Heuvelink G B M,Stein A.A generic framework for spatial prediction of soil variables based on regression-kriging[J].Geoderma,2004,120:75-93.
[8] 姜勇,李琪,张晓珂,等.利用辅助变量对污染土壤锌分布的克里格估值[J].应用生态学报,2006,17(1):97~101.
[9] 姜勇,梁文举,李琪,等.利用与回归模型相结合的克里格方法对农田土壤有机碳的估值及制图[J].水土保持学报,2005,19(5):97~100.
[10] 中国土壤学会化学专业委员会(编).土壤农业化学常规分析方法[M].北京:科学出版社,1983.
[11] 王艳杰,付桦.雾灵山地区土壤有机质全氮及碱解氮的关系[J].农业环境科学学报,2005,24(增刊):85~90.
[12] 王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513~519.
[13] 刘庆花,史学正,于东升,等.土壤区划类型的参比与属地化研究[J].地理科学,2006,26(2):217~223.
[14] 张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学,2006,26(3):340~344.
[15] 翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):369~375.
[16] 杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007,27(3):348~353.
[17] 钟晓兰,周生路,赵其国.长江三角洲地区土壤重金属污染特征及潜在生态风险评价--以江苏太仓市为例[J].地理科学,2007,27(3):395~400.
Outlines

/