This paper presents data of a 8-year time series of particulate organic carbon (POC) and dissolved organic carbon (DOC), and isotopic composition (Δ14C, δ13C) of suspended sediment at Makou section of the Xijiang River.We also discuss the sources of suspended sediment, using natural 14C method.The results of organic carbon concentration show temporal variation.Among them, POC content ranges from 0.13 mg/L to 4.98 mg/L with the average value of 1.35 mg/L and DOC content range from 0.98 mg/L to 4.17 mg/L with the average value of 1.86 mg/L.The content of DOC is slightly higher than that of POC in most cases, indicating that POC produced by mechanical erosion is not dominant, while DOC resulting from decomposition of organic matter was dominant in the Xijiang River.The DOC/POC ratio is 1.34, higher than that of the Changjiang (Yangtze) River and the Huanghe (Yellow) Rivers.In recent years, suspended POCδ13C ranges from -21.3‰ to -26.1‰, showing drift phenomenon with the time, and indicating the overall improvement of the ecological environment in the Xijiang River basin.The suspended sediment Δ14C values ranges from -132‰ to -425‰, whose variation were closely related to soil erosion produced by precipitation during the sampling period.The deeper soil erosion contributes more to "negative" suspended sediment POCΔ14C value and aged organic carbon; while the shallow soil erosion contributes more to "positive" suspended sediment POCΔ14C value and young organic carbon.
WEI Xiu-guo, LI Ning-li, SHEN Cheng-de, GUO Zhi-xing
. Riverine Organic Carbon Content and Significance of Carbon Isotopic Composition in the Xijiang River, China[J]. SCIENTIA GEOGRAPHICA SINICA, 2011
, 31(2)
: 166
-171
.
DOI: 10.13249/j.cnki.sgs.2011.02.166
[1] Raymond P A,Bauer J E,Caraco N F,et al.Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers[J].Marine Chemistry,2004,92(1-4):353-366.
[2] Mayorga E.Carbon cycle:Harvest of the century[J].Nature,2008,451(7177):405-406.
[3] Goi M A,Ruttenberg K C,Eglinton T I.A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J].Geochimica et Cosmochimica Acta,1998,62(18):3055-3075.
[4] Wu Y,Zhang J.Sources and distribution of carbon within the Yangtze River system[J].Estuarine,Coastal and Shelf Science,2007,71(1-2):13-25.
[5] 陈静生.我国河流水化学研究进展[J].地理科学,1999,19(4):290~ 294.
[6] Gibbs R J.The geochemistry of the Amazon River system:Part I.The factors that control the salinity and the composition and concentration of the suspended solids[J].Geol.Soc.Am.Bull.1967,78(10):1203-1232.
[7] Richey E J,Melack M J,Aufdenkampe A K,et al.Outgrassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2[J].Nature,2002,416(6881):617-620.
[8] Villar J C E,Loup G J,Josyane R,et al.Contrasting regional discharge evolutions in the Amazon basin(1974-2004)[J].Journal of Hydrology,2009,375(3-4):297-311.
[9] Raymond P A,Bauer J E,Caraco N F,et al.Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers[J].Marine Chemistry,2004,92(1-4):353-366.
[10] Masiello C A,Druffel E R M.Carbon isotope geochemistry of the Santa Clara River[J].Global Biogeochem Cycles,2001,15(2):407-416.
[11] 魏秀国,沈承德,孙彦敏,等.珠江水体悬浮物颗粒有机碳稳定同位素组成及分布特征[J].地理科学,2003,23(4):471~476.
[12] 魏秀国,沈承德,孙彦敏,等.珠江水体悬浮物碳稳定同位素组成与流域土壤侵蚀研究[J].沉积学报,2008,26(1):151~157.
[13] 魏秀国,沈承德,李宁利,等.珠江水体悬浮物的表观年龄与流域侵蚀[J].科学通报,2010,55(7):603~609.
[14] Stuiver M,Polach H A.Discussion:reporting of 14C data[J].Radiocarbon,1977,19(3):355-363.
[15] 高全洲,沈承德,孙彦敏,等.西江流域的有机碳侵蚀通量[J].沉积学报,2000,18(4):639~645.
[16] Raymond A P.The age of the Amazon’s breath[J].Nature,2005,436(7050):469-470.
[17] Gislason S R,Oelkers E H,Eiriksdottir E S,et al.Direct evidence of the feedback between climate and weathering[J].Earth and Planetary Science Letters,2009,277(1-2):213-222.
[18] 朱景郊,林钧枢,张耀光.广西大化水库库区喀斯特地形和渗漏分析[J].地理科学,1982,2(4):337~348.
[19] 毛健全,李景阳.贵州省独山南部地区构造网络对喀斯特发育的控制[J].地理研究,1986,6(4):47~57.
[20] 魏秀国.珠江流域河流碳通量与流域侵蚀研究.广州:中国科学院广州地球化学研究所,2003:58~67.
[21] 李先琨,黄玉清,苏宗明,等.广西水土流失重点区域生态恢复试验研究[J].水土保持通报,1997,17(6):1~6
[22] Bird M I,Pousai P.Variations of δ13C in the surface soil organic carbon[J].Global Biogeochemical Cycles,1997,11(3):313-322
[23] 徐炯心.人类活动和降水变化对嘉陵江流域侵蚀产沙的影响[J].地理科学,2006,26(4):432~437.
[24] 张正栋.珠江河口地区可持续发展评价研究[J].地理科学,2005,25(1):29~36.
[25] Dacidson G R.The stable isotope composition and measurement of carbon in soil CO2[J].Geochemica et Cosmochemica Acta,1995,59(12):2485-2489.
[26] 沈承德,易惟熙,孙彦敏,等.鼎湖山森林土壤14C表观年龄及δ13C分布特征[J].第四纪研究,2000,20(4):335~344.
[27] Ludwig W,Probst J L,Kempe S.Predicting the oceanic input of organic carbon by continental erosion[J].Global Biogeochem Cycles,1996,10(1):23-41.
[28] Thurman E M.Organic geochemistry of natural waters[M].Dordrecht:Martinus Nijhoff/Dr W.Junk Publishers,1985.