Remote Sensing & GIS-Based Distributed Hillslope Stability: Quantitative Evaluation Model

Expand
  • 1. International Institute for Earth System Science, Nanjing UniversityNanjing, Jiangsu 210093;
    2. Department of Geography Information Engineering, Southeast University, Nanjing, Jiangsu 210008;
    3. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710075

Received date: 2003-06-10

  Revised date: 2003-10-20

  Online published: 2004-07-20

Abstract

Natural disasters such as landslide and soil erosion are severe in China. Therefore, effective evaluation of slope stability further provides the warning for local/regional soil erosion, which is essential to the precise prediction and effective prevention of these catastrophes. Many approaches have been proposed in assessing slope stability and landslide hazards in the literature, the commonly-used approaches include (1) field inspection using a checklist to identify sites susceptible to landslides; (2) projection of future patterns of instability from analysis of landslide inventories; (3) multivariate analysis of factors characterizing observed sites of slope instability; (4) stability ranking based on criteria such as slope, lithology, landform, or geologic structure; and (5) failure probability analysis based on slope stability models with stochastic hydrologic simulations. Each of these is valuable for certain applications. None, however, takes full advantage of the fact that debris flow source areas are, in general, strongly controlled by surface topography through shallow subsurface flow convergence, increased soil saturation, increased pore pressures and shear strength reduction. In this study, a distributed modeling scheme based on digital elevation model (DEM), takes advantage of geographic information system (GIS) and remote sensing information coupling with the Infinite Slope Stability Model to quantify topographic attributes related to slope instability and landsliding so as to mapping the hillslope stability entitled as SINMAP was introduced in detail, and its application to a 2431 km2 watershed in Shanxi Province was conducted and tested with the discussion of the field observations. The experimental application indicated its good applicability and operational value in quantitative evaluation of surface stabilities in basin scale areas.

Cite this article

WU Li, ZHANG Wan-Chang, ZHANG Dong, ZHOU Jie . Remote Sensing & GIS-Based Distributed Hillslope Stability: Quantitative Evaluation Model[J]. SCIENTIA GEOGRAPHICA SINICA, 2004 , 24(4) : 458 -464 . DOI: 10.13249/j.cnki.sgs.2004.04.458

References

[1] 张 梁,张业成. 地质灾害灾情评估理论与实践[M]. 北京:地质出版社,1998.
[2] Cooke R V, Doornkamp J C. Geomorphology in Environmental Management(2nd Edition)[M]. Oxford: Clarendo Press, 1990.79-105.
[3] 陈 杰,龚子同,高尚玉.干旱地区草场荒漠化及其评价[J].地理科学,2000,20(2): 176~181.
[4] 周炳中,包浩生,彭补拙.长江三角洲地区土地资源开发强度评价研究[J].地理科学,2000,20(3): 218~221.
[5] 宋长春,邓 伟.吉林西部地下水特征及其与土壤盐渍化的 关系[J].地理科学,2000,20(3): 246~250.
[6] 聂庆华,包浩生,王海英.基于GIS农田土地质量评价与立地分析[J].地理科学,2000,20(4): 307~313.
[7] 张科利,张竹梅.坡面侵蚀过程中细沟水流动力学参数估算探讨[J].地理科学,2000,20(4): 326~330.
[8] 林年丰,汤 洁.中国干旱半干旱区的环境演变与荒漠化的成因[J].地理科学,2001,21(1): 24~29
[9] 张丽萍,朱大奎,杨达源.黄河中游土壤侵蚀与下游古河道三角洲演化的过程响应[J].地理科学,2001,21(1): 52~56.
[10] 张建平.西南地区山地不同土地退化类型特征及调控途径[J].地理科学,2001,21(3): 236~241.
[11] 崔保山,刘兴土.黄河三角洲湿地生态特征变化及可持续性管理对策[J].地理科学,2001,21(3): 250~256.
[12] 袁建平,蒋定生.黄土丘陵沟壑区小流域降雨入渗产流点面转化[J].地理科学,2001,21(3): 262~266.
[13] 闫满存,王光谦,刘家宏. GIS支持的澜沧江下游区泥石流爆发危险性评价[J].地理科学,2001,21(3): 334~338.
[14] 唐 川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学,2002,22(3): 300~304.
[15] 王家鼎, 惠泱河.黄土地区灌溉水诱发滑坡群的研究[J].地理科学,2002,22(3): 305~310.
[16] 张 燕,彭补拙,高 翔,等.人类干扰对土壤侵蚀及土壤质量的影响——以苏南宜兴低山丘陵区为例[J].地理科学,2002,22(3):335~340.
[17] 陈国阶.我国西部生态退化的社会经济分析——以川西为例[J].地理科学,2002,22(4): 390~396.
[18] 彭文英,张科利,江忠善,等.黄土高原坡耕地退耕还草的水沙变化特征[J].地理科学,2002,22(4):397~402.
[19] 赵 烨,海春兴,刘 霄,等.滦河源区东沟小流域土壤风蚀特征分析[J].地理科学,2002,22(4): 436~440.
[20] 赵善伦,尹 民,张 伟.GIS支持下的山东省土壤侵蚀空间特征分析[J].地理科学,2002,22(4):694~699.
[21] 蒋忠信.藏东南泥石流沟纵剖面演化的最小功模式[J].地理科学,2003,23(1): 25~31.
[22] 张 勃,程国栋.黑河绿洲坡面分异演化研究[J].地理科学,2003,23(1):193~199.
[23] 郑粉莉,高学田.坡面土壤侵蚀过程研究进展[J].地理科学,2003,23(1): 230~235.
[24] 罗利芳,张科利,李双才.撂荒后黄土高原坡耕地土壤透水性和抗冲性的变化[J].地理科学,2003,23(6):728~733.
[25] de Jong S M, Paracchini M L, Bertolo F, et al. Regional Assessment of Soil Erosion Using the Distributed Model SEMMED and Remotely Sensed Data[J]. Catena, 1999, 37:291-298.
[26] 《工程地质手册》编辑委员会:工程地质手册[M]. 北京:中国建筑工业出版社,1992.
[27] Carrera A M, Cardinali M, Detti R, et al. GIS Techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms, 1991, 16: 427-445.
[28] Dietrich W E, Wilson C J, Montgomery D R, et al. Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model[J]. The Journal of Geology, 1993, 101: 259-278.
[29] Montgomery D R, Dietrich W E. A Physically Based Model for the Topographic Control on Shallow Landsliding[J]. Water Resources Research, 1994, 30(4): 1153-1171.
[30] Wu W, Sidle R C. A Distributed Slope Stability Model for Steep Forested Watersheds[J]. Water Resources Research, 1995, 31(8): 2097-2110.
[31] 水利部长江水利委员会.长江流域地图集[M]. 北京:中国地图出版社,1999.
[32] Beven K J, Kirkby M J. A physically based variable contributing model of basin hydrology [J]. Hydrological Sciences Bulletin, 1979, 24(1): 43-69.
[33] Beven K J. Topmodel. In: Singh V P. Chapter 18 in Computer Models of Watershed Hydrology. Littleton:Water Resources Publications, 1995.
[34] O'Callaghan J F, Mark D M. The Extraction of Drainage Networks From Digital Elevation Data[J]. Computer Vision, Graphics and Image Processing, 1984, 28: 328-344.
[35] Tarboton D G. A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital Elevation Models[J]. Water Resources Research, 1997, 33(2): 309-319.
Outlines

/