The debris flow in southeast Tibet area can divided into three genetic types: a rainwater type, a ice-snow melt-water type and a glacial-lake burst type. Theory of minimum energy dissipation is observed in longitudinal profile evolution of the debris flows. The theory is increase of velocity with adjustment of longitudinal gradient in valley. It is expression of the theory that average value (ū) of velocity along the valley relates to a forming index (N) of the valley longitudinal profile: ū∞f(N). The f(N) is a velocity function. For debris flow valleys of rainwater, melt-water and burst types, the f(N) are respectively {1/3-2/[(N+1)(N+2)(N+3)]}1/2,{2/3-2/[(N+1)(N+3)]}1/2 and [N/(N+1)]2/3. In process of evolution of the valley, increase of the value N with increase of the value ū,and shape of the valley longitudinal profile develop to a concave parabola pattern from a convex one, and morphological stages of the debris flow are a brow stage, a developing stage, a exuberant stage and declined stage, and stable stage of the basin in order. As examples with model debris flow valleys in southeast Tibet area, above model and regular of morphological evolution in the valley are examined.
JIANG Zhong-Xin
. Model of Minimum Energy Dissipation in Evolution of Valley Longitudinal Profile of Debris Flow in Southeast Tibet Area[J]. SCIENTIA GEOGRAPHICA SINICA, 2003
, 23(1)
: 25
-31
.
DOI: 10.13249/j.cnki.sgs.2003.01.25
[1] 吕儒仁, 唐邦兴, 朱平一. 西藏泥石流与环境[M]. 成都: 成都科技大学出版社, 1999.
[2] 金德生. 地貌最小功原理. 见: 现代地理学辞典[M]. 北京: 商务印书馆, 1990. 182~183.
[3] 严宝文, 包忠谟. 均衡纵剖面形态的实验研究[J]. 水土保持通报, 2000, 20 (1): 14~16.
[4] 周筑宝. 最小能耗原理及其应用[M]. 北京: 科学出版社, 2001. 151.
[5] 黄克中, 钟恩清. 最小水流能量损失率理论在河相关系中的应用[J]. 地理学报, 1991, 46 (2): 178~185.
[6] 蒋忠信.泥石流沟谷纵剖面形态与流域地貌信息熵.见:地质灾害国际交流论文集.成都:西南交通大学出版社,1993.49~57.
[7] 朱平一,冯请华,陈 瑞,等. 川藏公路南线(西藏境内) 山地灾害及防治对策. 北京:科学出版社, 1995. 179~252.
[8] 朱平一, 何子文, 汪阳春,等. 川藏公路典型山地灾害研究[M]. 成都: 成都科技大学出版社, 1999. 35~51.