Climate Change and Its Impact on the Lake Environment in the Tibetan Plateau in 1971-2008
Received date: 2011-11-01
Request revised date: 2012-01-09
Online published: 2012-12-20
Copyright
Regional climate changes in different regions in the Tibetan Plateau in 1971-2008 are analyzed based on the monthly temperature and precipitation data from 52 meteorological stations. Regional weighted average values of meteorological elements are calculated by factor analysis. Rate of linear tendency and moving t-test are used to indicate the change trends and detect abrupt changes of meteorological elements respectively. Besides, lake environment changes in the Tibetan Plateau are discussed as the responses to the regional climate changes. The results show that the annual mean temperature has continued to rise at the rate of 0.22-0.49℃/10a in all the subregions in the Tibetan Plateau in recent 40 years,the increase of annual mean temperature is particularly significant in the Qaidam region with a warming rate of 0.49 ℃/10a. The annual mean temperature experienced two abrupt changes from low to high in 1987 and 1998 respectively and the latter is more significant than the former. The interannual variations of annual available precipitation show some differences among the subregions in the Tibetan Plateau, an overall trend of humidification is found in the Qaidam region and the east part of south Qiangtang Plateau in the northern Tibet. The variation of lake environment is affected by the climate change in the Tibetan Plateau notably. The increase and decrease of lake water volume are corresponding with humid and dry period of climate. Climatic condition has shifted from warm-dry to warm-humid since the late 20th century or early 21st century in Qinghai, the northern and southern Tibet. In some large lakes such as Qinghai Lake, Eling Lake, Donggi Conag Lake and Zige Tangco Lake in the Tibetan Plateau, water level has risen and water ion concentration has decreased in recent years, which reflects the increase of lake water volume under the warm-humid climatic conditions.
Key words: Tibetan Plateau; climate change; lake environment; regional difference
JIANG Yong-jian , LI Shi-jie , SHEN De-fu , CHEN Wei , JIN Chuan-fang . Climate Change and Its Impact on the Lake Environment in the Tibetan Plateau in 1971-2008[J]. SCIENTIA GEOGRAPHICA SINICA, 2012 , 32(12) : 1503 -1512 . DOI: 10.13249/j.cnki.sgs.2012.012.1503
Fig.1 Distribution of the selected 52 meteorological stations in study area图1 研究区气象台站分布 |
Table 1 Physico-geographical regionalization in the Tibetan Plateau and the distribution of the meteorological stations表1 研究区自然地域分区及区内气象站点 |
自然地带 | 气象站点 |
---|---|
Ⅰ柴达木,山地荒漠地带 | 大柴旦、德令哈、都兰、格尔木、冷湖、诺木洪、小灶火、茫崖 |
Ⅱ青东祁连,山地草原地带 | 刚察、共和、贵德、门源、民和、祁连、托勒、西宁、野牛沟、兴海 |
Ⅲ青南,高寒草甸草原地带 | 玛多、曲麻莱、托托河、五道梁 |
Ⅳ果洛那曲,高寒灌丛草甸地带 | 班玛、达日、久治、囊谦、清水河、玉树、杂多、河南、嘉黎、那曲、索县 |
Ⅴ羌塘,高寒草原地带 | 班戈、当雄、申扎、安多 |
Ⅵ川西藏东,山地针叶林地带 | 波密、察隅、昌都、丁青、林芝 |
Ⅶ藏南,山地灌丛草原地带 | 错那、定日、江孜、拉萨、隆子、聂拉木、帕里、日喀则、泽当、尼木 |
Fig.2 Regional interannual variation (a) and corresponding moving t-test (b) and rate of linear tendency (c) of annual mean temperature in the Tibetan Plateau in 1971-2008图2 年平均气温年际变化曲线(a),年平均气温滑动t检验曲线(b)和年平均气温变化倾向率(c) |
Table 2 Regional interdecadal variation of annual mean temperature (mean value) (℃) in the Tibetan Plateau表2 青藏高原各区不同年代的年平均气温 (均值)(℃) |
区域 | 1971~1980年 | 1981~1990年 | 1991~2000年 | 2001~2008年 | 1971~2000年 |
---|---|---|---|---|---|
I | 3.26 | 3.46 | 4.03 | 4.67 | 3.58 |
II | 1.89 | 2.00 | 2.47 | 3.01 | 2.12 |
III | -3.97 | -4.08 | -3.59 | -2.85 | -3.88 |
IV | 0.22 | 0.46 | 0.68 | 1.44 | 0.45 |
V | -0.65 | -0.46 | -0.31 | 0.34 | -0.47 |
VI | 7.90 | 7.99 | 8.13 | 8.62 | 8.01 |
注:1971~2000年数据为年平均气温的多年平均值。 |
Fig.3 Interdecadal increase amplitude of annual mean temperature in different eras (a) and in different regions (b)图3 不同年代年平均气温的年代际增幅(a)和不同区域年平均气温的年代际增幅(b) |
Fig.4 Regional interannual variation (a) and corresponding moving t-test (b) and rate of linear tendency (c) of annual available precipitation in the Tibetan Plateau in 1971-2008图4 年可利用降水量年际变化曲线(a),年可利用降水量滑动t检验曲线(b)和年可利用降水量变化倾向率(c) |
Table 3 Regional annual available precipitation of different periods in the Tibetan Plateau表3 青藏高原各区不同时期的年可利用降水量 |
区域 | 时间 | 年可利用降水量(mm,均值) |
---|---|---|
I | 1971~1985年 | 9.0 |
1986~1994年 | 15.9 | |
1995~2001年 | 7.8 | |
2002~2008年 | 18.8 | |
II | 1971~1980年 | 137.9 |
1981~1990年 | 156.7 | |
1991~2000年 | 134.0 | |
2001~2008年 | 149.1 | |
III | 1971~1980年 | 159.0 |
1981~1990年 | 166.1 | |
1991~2000年 | 151.5 | |
2001~2008年 | 180.3 | |
IV | 1971~1980年 | 328.8 |
1981~1990年 | 351.6 | |
1991~2000年 | 311.8 | |
2001~2008年 | 327.2 | |
V | 1971~1995年 | 200.0 |
1996~2008年 | 253.4 | |
VI | 1971~1984年 | 319.1 |
1985~2000年 | 395.6 | |
2001~2008年 | 325.9 | |
VII | 1971~1983年 | 138.7 |
1984~1991年 | 183.6 | |
1992~1997年 | 141.5 | |
1998~2008年 | 184.1 |
Fig.5 Correlation between water volume fluctuation of Qinghai Lake and available precipitation (a) and climatic elements in 1981-2000 (b), Interannual variation of water level of Qinghai Lake in 1956-1990(c)图5 青海湖1981~2000年水量变化与年可利用降水量(a)、年平均气温(b)相关性分析和1956~1990年水位变化(c) |
Table 4 Estimated results of water balance of Qinghai Lake in the 1980s and 1990s (mean value)表4 青海湖不同年代水量平衡计算结果(均值) |
湖泊面积(km2) | 径流补给(108m3) | 湖面降水(108m3) | 湖面蒸发(108m3) | 水量变化(108m3) | 水位变化 (cm) | |
---|---|---|---|---|---|---|
1981~1990年 | 4313.3 | 16.88 | 15.76 | 33.60 | -0.95 | -2.2 |
1991~2000年 | 4277.8 | 14.38 | 14.13 | 34.47 | -6.00 | -13.9 |
Fig.6 Interannual variation of annual precipitation in Gangcha station in 1971-2008图6 刚察站近40 a来年降水量变化 |
Fig.7 Interannual variation of annual precipitation and evaporation in Amdo station in 1971-2008图7 安多站近40 a来年降水量和年小型蒸发量变化曲线 |
Table 5 Chemical composition of water of Zige Tangco Lake in 1999 and 2006表5 兹格塘错不同年份水化学组分的变化 |
时间 | 离子浓度/(mg/L) | 矿化度(g/L) | |||||||
---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Ca2+ | Cl– | SO42– | CO32– | HCO3– | ||
1999年 | 12164 | 749 | 119 | 25 | 1497 | 8026 | 3350 | 14584 | 40.52 |
2006年 | 7426 | 520 | 111 | 2.5 | 1020 | 4850 | 4540 | 2450 | 20.92 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
高桥浩一郎.用月平均气温、月降水量估算蒸发量的经验公式[J].天气(日本),1979,26(12):29~32.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
IPCC.Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (AR4)[R]. Cambridge, UK: Cambridge University Press, 2007.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
中国科学院兰州分院,中国科学院西部资源环境研究中心.青海湖近代环境的演化和预测[M].北京:科学出版社,1994:55~61.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
/
〈 | 〉 |