Spatial Econometric Analysis of The Rank-size Rule for Urban System: A Case of Prefectural-level cities in China’s Middle Area

  • School of Statistics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China

Received date: 2011-08-14

  Revised date: 2012-01-12

  Online published: 2012-06-19


A remarkable empirical regularity is that the city size distribution in many countries is well approximated to a Pareto distribution. This claim is so widely accepted that it has gained the status of a law, Zipf’s Law, or a rule, the Rank-size Rule. It has also inspired extensive researches mainly in the fields of economic geography and regional science. The urbanization process has mainly taken place since 1978 with significant processes of industrialization and economic growth in China. Many researchers have studied the characteristics of city scale distribution in different regions according to Ordinary Least Squares (OLS). The spatial econometric analysis of urban system is still scarce. This article adopts spatial econometric models to analyze the Rank-size Rule and evolution mechanisms of urban system in China’s middle area through population data of prefectural-level cities from 1985 to 2009. Firstly, cross-sectional distribution of urban population is analyzed by means of nonparametric estimations of density functions. Evolution of the shape of urabn population cross-sectional distribution shows the existence of convergence trends. Secondly, the linear regression equation is estimated by OLS. Then spatial autoregressive model and spatial error model are estimated. The results show that the estimation over time of the q parameter displays an increasing trend from 1985-1990, then decrease until 1995, from which it starts to augment. Zipf’s exponent estimated by spatial lag model is smaller than OLS. It indicates that the size distribution of urban system is more convergent because of significant spatial dependence between cities. Thirdly, we explore the mechnism between the spatial dependence and city size distribution. Spatial interaction caused by the agglemation of production factors, industrial adjustment and innovation diffusion provides the basis of spatial dependence. It affects the evolution of urban system and makes urban size distribution more convergent. Finally, the article concludes with a summary of key findings and puts forward some recommendations.

Cite this article

CHENG Kai-ming, ZHUANG Yan-jie . Spatial Econometric Analysis of The Rank-size Rule for Urban System: A Case of Prefectural-level cities in China’s Middle Area[J]. SCIENTIA GEOGRAPHICA SINICA, 2012 , 32(8) : 903 -912 . DOI: 10.13249/j.cnki.sgs.2012.08.903


[1] Fujita Masahisa, Paul Krugman, Tomoya Mori. On the evolutionof hierarchical urban systems[J]. European Economic Review,1999,(43): 209-251.

[2] Anderson G, Ge Y. The size distribution of Chinese cities[J]. RegionalScience and Urban Economics, 2005, 35: 756–776.

[3] Auerbach F. Das gesetz der bevolkerungsk on centration[J]. PetermannsGeographische Mitteilungen, 1913,(59): 73-76.

[4] Singer H W. The“Courbe des populations”: a parallel to Pareto’slaw[J]. Economic Journal, 1936,(46): 254-263.

[5] Zipf G K. Human Behaviour and the principle of least effort
[M]. Addison-Wesley, Reading, MA, 1949: 32-41.

[6] Madden C J. Some indicators of stability in the growth of citiesin the United States[J]. Economic Development and CulturalChange, 1956, (4):236-452.

[7] Berry B J L. City size distributions and economic development[J]. Economic Development and Cultural Change, 1961, (9):573-587.

[8] Carroll G R. National city-size distribution: what do we knowafter 67 years of research?[J]. Progress in Human Geography,1982, 6(1): 1-43.

[9] [英]保罗·切希尔, 城市区域规模和结构变化趋势[C]//[美]埃德温·S·米尔斯区域和城市经济学手册(第3 卷)——应用城市经济学. 北京: 经济科学出版社, 2003: 15~30.

[10] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco:Freeman, 1982.

[11] 刘继生, 陈彦光. 城市地理分形研究的回顾与前瞻[J]. 地理科学, 2000, 20(2): 166~171.

[12] 陈彦光, 周一星. 豫北地区城镇体系空间结构的多分形研究[J]. 北京大学学报(自然科学版), 2001, 37(6): 810~818.

[13] Gabaix X. Zipf’s law for cities: an explanation[J]. QuarterlyJournal of Economics 1999, 114:739~767.

[14] Soo K Tong. Zipf’s Law for cities: a cross-country investigation[J]. Regional Science and Urban Economics, 2005, 35:239-263.

[15] Takatoshi Tabuchi, Jacques - Francois Thisse, Dao-Zhi Zeng.On the number and size of cities[J]. Journal of Economic Geography,2005,(4): 423-448.

[16] 顾朝林. 中国城市体系——历史·现状·展望[M]. 北京: 商务印书馆, 1992:201~313.

[17] 许学强, 周一星. 城市地理学[M]. 北京: 高等教育出版社,1997:123~196.

[18] 杨吾扬, 梁进社. 高等经济地理学[M]. 北京: 北京大学出版社, 1997:387~397.

[19] 王铮. 理论经济地理学[M]. 北京:高等教育出版社, 2002:162~179.

[20] 张锦宗, 朱瑜馨, 曹秀婷. 1990—2004 中国城市体系演变研究[J]. 城市发展研究, 2008, (4): 84~90.

[21] 苏飞, 张平宇. 辽中南城市群规模分布演变特征[J]. 地理科学, 2010, 30(3): 343~349.

[22] 王颖, 张婧, 李诚固,等. 东北地区城市规模分布演变及其空间特征[J]. 经济地理, 2011, 31(1): 55~59.

[23] 高鸿鹰, 武康平. 我国城市规模分布Pareto 指数测算及影响因素分析[J]. 数量经济技术经济研究, 2007,(4): 43~52.

[24] 吕作奎, 王铮. 中国城市规模分布及原因分析[J]. 现代城市研究, 2008,(6):81~87.

[25] Zelai Xu, Nong Zhu. City size distribution in China: Are largecities dominant?[J]. Urban Studies, 2009, 46(10): 2159-2185.

[26] 胡毅, 张京祥. 基于县域尺度的长三角城市群经济空间演变特征研究[J]. 经济地理, 2010, 30(7): 1112~1117.

[27] 蒲英霞, 马荣华, 马晓冬,等. 长江三角洲地区城市规模分布的时空演变特征[J]. 地理研究, 2009, 28(1): 161~172.

[28] 周一星, 于海波. 中国城市人口规模结构的重构[J]. 城市规划, 2004,28(6): 49~55.

[29] Julie Le Gallo, Coro Chasco. Spatial analysis of urban growth inSpain, 1900–2001[J]. Empirical Economics, 2008,34: 59–80.

[30] Anselin L. Spatial Econometrics: Methods and Models[M]. Boston:Kluwer Academic Publishers, 1988: 32-54.

[31] LeSage James P, R Kelly Pace. Introduction to Spatial Econometrics[M]. BocaRaton: CRC Press, 2009: 45-120.

[32] 周干峙. 城市及其区域——一个典型的开放的复杂巨系统[J]. 城市规划, 2002,26(2):7~8.

[33] 王劲峰, 廖一兰,等. 空间数据分析教程[M]. 北京:科学出版社, 2010: 56~62.

[34] Krugman P. Geography and Trade[M]. London: MIT Press,1991: 25-37.

[35] 吴彤. 自组织方法论研究[M]. 北京: 清华大学出版社,2001: 3~12.