Carbon Dioxide Emission From Tourist Transport in Three Destinations of Different Travel Distances
Received date: 2011-09-30
Request revised date: 2012-03-19
Online published: 2012-10-20
Copyright
Tourism industry plays an unnegligible role in the global anthropogenic carbon dioxide (CO2) emission and climate change, with its contribution continuously increase in the future. Tourist transport is the most important activity resulting in CO2 emission in the tourism sector. To develop a low-carbon tourism industry, it is therefore necessary to assess both the patterns and causes of CO2 emission associated with tourist travel. This study selects three tourist destinations in Fujian with an increasing average tourist travel distance, namely Fuzhou National Forest Park (FZ),Taimushan National Key Scenic Spots (TMS), and Wuyishan Scenic Area (WYS), to determine the total amount, intensity, and spatial patterns of CO2 emission from domestic tourist transport. In each tourist destination, a questionnaire survey on tourist travel mode and travel distance was conducted during August to October 2010. Mean CO2 emission from individual tourist of these destinations increased with average travel distance, ranked as FZ (15.9 kg CO2/person) < TMS (105.3 kg CO2/person)<WYS (232.9 kg CO2/person). Though CO2 emission per person-kilometer also increases (FZ, 0.097 kg CO2 /(person·km); TMS, 0.134 kg CO2 /(person·km); WYS, 0.159 kg CO2 /(person·km)), the increase in average travel distance is mainly responsible for the increment of CO2 emission from individual tourist. For each destination, CO2 emission per person·km or per individual tourist within 0-350 km changed little or even declined slightly with increase in travel distance, but increased dramatically beyond 350 km, reflecting the impacts of travel distance on choice of transport mode. Thus, the distance of 350 km can be identified as a threshold for defining the medium- and the long-distance trip based on the transition in CO2 emission with travel distance. The annual total CO2 emission for these destinations rankes as WY (692 899 t)>TMS (65 651 t)>FZ (31 859 t), and the mean CO2 emission density decreases in the sequence of WYS (946.3 t/km), FZ (389.0 t/km) and TMS (166.6 t/km). Depended on both the tourist number and CO2 emission per tourist, CO2 emission density changes with travel distance and differs among destinations, which peaks at 700 km and 1 750 km in WYS, at 250 km and 2250 km in TMS, and at 75 km, 250 km, and 900 km in FZ. The major contribution to total CO2 emission in tourist transport comes from the long-distance and the aerial tourists, which increases with increasing average travel distance. Though tourists with travel distance longer than 350 km occupy only 5.5%, 27.8% and 81.3% of total tourist number respectively in FZ, TMS and WYS, they accounted for 65.1%, 90.0% and 98.7% of total CO2 emission accordingly. The aerial tourists are responsible for 51.3%, 75.4% and 87.8% of total CO2 emission, though they only contribute to 1.5%, 6.29% and 31.1% of total tourist number. Thus, to avoid long-distance or aerial trips is the most important way to cut down the CO2 emission bill associated with travel transport. Efforts that select short-distance trips or trips on more energy-efficient transport should be encouraged.
BAO Zhan-xiong , YUAN Shu-qi , CHEN Guang-shui . Carbon Dioxide Emission From Tourist Transport in Three Destinations of Different Travel Distances[J]. SCIENTIA GEOGRAPHICA SINICA, 2012 , 32(10) : 1168 -1175 . DOI: 10.13249/j.cnki.sgs.2012.010.1168
Table 1 Parameters of CO2 emission for different transport modes表1 不同交通方式的碳排放参数 |
交通方式 | 排放参数 | 参考文献 |
---|---|---|
公交车 | 0.017 kg CO2 / (人·km) | [21] |
长途客运汽车 | 0.07 kg CO2 /(人·km) | [22] |
出租车 | 0.2 kg CO2/km | [23] |
私家车 | 0.2 kg CO2/km | [23] |
电动车 | 0.009 kg CO2 /(人·km) | [24] |
摩托车 | 0.058 kg CO2 (人·km) | [24] |
普通火车 | 0.027 kg CO2 /(人·km) | [22] |
动车组列车 | 0.0267 kg CO2 /(人·km) | [22] |
国内航线飞机 | 0.3 kg CO2 /(人·km) | [23] |
Table 2 Parameters of CO2 emission for Taxi and car in each tourist destination表2 不同景区自驾车和出租车的碳排放参数 |
交通方式 | 福州森林公园 | 太姥山 | 武夷山 | ||||||
---|---|---|---|---|---|---|---|---|---|
实坐人数 (人) | 上座率 (%) | 每人每公里碳排放 [kg CO2 /(人·km)] | 实坐人数 (人) | 上座率 (%) | 每人每公里碳排放 [kg CO2 /(人·km)] | 实坐人数 (人) | 上座率 (%) | 每人每公里碳排放 [kg CO2 /(人·km)] | |
自驾汽车 | 2.8 | 70.2 | 0.071 | 3.4 | 85.0 | 0.059 | 2.9 | 73.5 | 0.068 |
出租车 | 1.6 | 53.3 | 0.125 | 1.7 | 58.0 | 0.115 | 1.8 | 60.0 | 0.111 |
Fig. 1 Changes in CO2 emission per person-kilometerwith travel distance in each destination图1 不同景区每人每公里碳排放量随距离的变化 |
Table 3 Annual tourist number and CO2 emission of each tourist destination表3 不同景区的碳排放特征比较 |
福州森林公园 | 太姥山 | 武夷山 | |
---|---|---|---|
吸引半径 (km) | 81.9 | 394.1 | 732.2 |
每人每公里碳排放量 [kg CO2 /(人·km)] | 0.097 | 0.134 | 0.159 |
人均碳排放量(kg CO2/人) | 15.9 | 105.3 | 232.9 |
碳排放密度(t CO2/ km) | 389.0 | 166.6 | 946.3 |
年游客量(万人) | 198.8 | 62.4 | 297.5 |
年碳排放量(t CO2/a) | 31 859 | 65 651 | 692 899 |
Table 4 Mean travel distance, percentages of tourist number and CO2 emission for different transport mode in each destination表4 各景区不同交通方式的平均旅行距离及其所占人数和碳排放比例 |
交通方式 | 福州森林公园 | 太姥山 | 武夷山 | ||||||
---|---|---|---|---|---|---|---|---|---|
平均距离 (km) | 人数比例 (%) | 排放比例 (%) | 平均距离 (km) | 人数比例 (%) | 排放比例 (%) | 平均距离 (km) | 人数比例 (%) | 排放比例 (%) | |
飞机 | 940.0 | 1.5 | 51.3 | 2 102.3 | 6.3 | 75.4 | 1095.2 | 31.1 | 87.8 |
普通火车 | 445.5 | 1.4 | 2.0 | 612.4 | 3.3 | 1.0 | 670.7 | 45.6 | 7.1 |
动车组列车 | 251.2 | 6.0 | 5.1 | 364.8 | 24.8 | 4.6 | |||
客运汽车 | 143.9 | 25.1 | 31.7 | 281.7 | 36.1 | 13.5 | 469.2 | 11.7 | 3.3 |
自驾汽车 | 70.8 | 10.9 | 6. 9 | 197.7 | 24.5 | 5.4 | 368.4 | 8.3 | 1.8 |
出租车 | 15.0 | 12.0 | 2.6 | 15.0 | 0.3 | 0.01 | 27.3 | 1.5 | 0.04 |
电动自行车 | 3.1 | 4.0 | 0.01 | 15.0 | 0.3 | 0.001 | |||
公交 | 4.2 | 28.0 | 0.3 | 14.0 | 2.0 | 0.01 | 15.0 | 1.9 | 0.004 |
摩托车 | 3.9 | 5.0 | 0.1 | 12.0 | 1.0 | 0.01 | |||
自行车 | 2.8 | 3.3 | 0.0 | 24.5 | 1.3 | 0.0 | |||
步行 | 1.1 | 3.0 | 0.0 |
注:空格处说明该景区没有相应的交通方式。 |
Fig. 2 Changes in individual tourist CO2 emission with travel distance in each destination图2 不同景区人均排放强度随距离的变化 |
Fig. 3 Changes in CO2 emission per kilometer with travel distance in each destination图3 不同景区排放密度随距离的变化 |
Fig. 4 Changes in cumulative percentage tourist number and CO2 emission with travel distance in each destination图4 不同景区游客量和碳排放量累积百分比随距离的变化 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
福建省旅游局. 2010年全省旅游经济指标分析[N/OL]. [2011-01-28].
110128995.html.
|
[21] |
|
[22] |
台湾高铁公司.《2009台湾高铁企业社会责任白皮书》[R/OL].
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
/
〈 | 〉 |