Pattern Characteristics and Evolution Trend of Intercity High-speed Rail Network in Northeast China
Received date: 2018-09-12
Request revised date: 2019-01-30
Online published: 2021-03-17
Supported by
National Science and Technology Basic Project of the Ministry of Science and Technology of China(2017FY101303-1)
National Natural Science Foundation of China(41571152)
The Knowledge Innovation Program of Chinese Academy of Sciences(ZDRW-ZS-2017-4-3-4)
National Natural Science Foundation of Heilongjiang(G2018003)
Northeast Agricultural University Scholars Academic Backbone Project(18XG12)
Copyright
This paper studied the spatial structure, pattern, characteristics and evolution trend of high-speed railway (HSR) network in Northeast China. The paper first measured intercity HSR connection intensity of Northeast China. Then by analyzing the network density, the small world effect, the cohesive subgroups, and three kinds of centralities using the network analysis software—University of California at Irvine Network (UCINET), this paper displayed the structure and characteristics of HSR network in Northeast China. Finally, the geographic information system (GIS) was used to simulate the pattern of the intercity HSR connection intensity and three kinds of centralities in Northeast China to reveal the characteristics and the differentiation of their spatial distribution. The results are as following: First, the HSR network of Northeast China is closely organized. And the small world effect of Northeast China’s HSR network is strong. However, HSR cities are still in a weak connection in the Northeast China’s HSR network. ‘Three HSR subgroups’, i.e., Changchun-Siping-Shenyang-Tieling-Fushun, Dalian-Liaoyang-Anshan-Yingkou-Panjin, Songyuan-Baicheng-Ulanhot, and ‘four HSR pairs’, i.e., Jilin-Yanji, Qiqihar-Daqing, Dandong-Benxi, Jinzhou-Huludao have emerged in the Northeast China’s HSR network and HSR ‘seven organization patterns’ have been formed. Second, HSR accessibility of the cities located at the southeast side with Harbin as its dividing line is higher than that of the cities on the northwest side with Harbin as its dividing line in Northeast China. HSR elements have developed into a ‘one core and three edges’ pattern. Changchun is the regional important HSR accessibility intermediary city. Third, connection intensity of different provinces and regions differs greatly as such: Liaoning>Jilin>Heilongjiang>East Inner Mongolia. Spatially, the HSR connection intensity of Liaoning province shows a “one shaft, two wings” spatial pattern. The HSR connection intensity of Jilin Province shows a ‘cross triangle’ spatial pattern. The HSR connection intensity of Heilongjiang Province shows a ‘shaft’ spatial pattern. The HSR connection intensity of East Inner Mongolia shows an “isolation” spatial pattern. Finally, the opening of HSRs in Northeast China accelerates the integration process of Harbin-Daqing-Qiqihar, Harbin-Changchun and Changchun-Jilin-Tumenjiang. It can also boost the growth and development of the HSR triangle skeleton in Liaozhongnan City Groups with Harbin-Dalian HSR, Shenyang-Dandong HSR and Dandong-Dalian HSR. The Northeast China’s HSR network mode will develop into the mode of ‘internal and external co-ordination, land and sea co-ordination’.
Key words: HSR network; intercity connection; operating frequency; Northeast China
Chu Nanchen , Zhang Pingyu , Li He , Jiang Bo . Pattern Characteristics and Evolution Trend of Intercity High-speed Rail Network in Northeast China[J]. SCIENTIA GEOGRAPHICA SINICA, 2019 , 39(5) : 761 -769 . DOI: 10.13249/j.cnki.sgs.2019.05.007
表1 东北地区高铁网络指标Table 1 HSR network indicators in Northeast China |
指标 | 含义 | 衡量标准 | |
---|---|---|---|
网络密度 | 从宏观视角衡量高铁网络各节点间整体联系的紧密程度 | 网络密度越大,节点间高铁联系越强,该网络对内部城际间高铁流影响越大,整体高铁联系越紧密 | |
小世界 效应 | 聚类系数 | 高铁节点聚集程度的系数 | 聚类系数越大、特征途径长度越小,高铁网络内部要素交流越充分,结构洞越少,小世界效应越显著,其中特征途径长度小于10表示该网络具备小世界效应[2] |
特征途径长度 | 通过最短途径连接任意两个节点的平均长度 | ||
凝聚子群 | 各城市间潜在的高铁联系与汇聚模式 | 城市间高铁联系越密切,越积极,同质性越强,越易形成凝聚子群。其中2个城市组合叫关系对,3个及3个以上城市组合叫子群 | |
中心度 | 点度中心度 | 表示高铁城市间联系能力,根据出发与到达指向性分为点出度与点入度 | 点出度越大表征城市门户的高铁辐射功能越强,点入度越大表征城市高铁流集聚能力越强 |
接近中心度 | 表示高铁城市的中心程度和对整体高铁网络要素的控制能力,根据输出端与输入端分为点出度与点入度 | 接近中心度越大,该高铁城市与其它城市的通达性越强,高铁流传递越容易,受其它城市控制越弱 | |
中间中心度 | 表示高铁城市有多大程度成为其它城市的“中介”或“桥接”,及有多大程度占据保障与控制该网络的关键位置 | 中间中心度越大,该高铁城市控制其它节点能力越强、高铁地位越核心、高铁中介效应越强 |
[1] |
|
[2] |
刘军. 整体网分析讲义: UCINET软件实用指南[M]. 上海: 格致出版社、上海人民出版社, 2009.
[
|
[3] |
蔡莉丽, 马学广, 陈伟劲, 等. 基于客运交通流的珠三角城市区域功能多中心特征研究[J]. 经济地理, 2013,33(11):52-57.
[
|
[4] |
赵映慧, 姜博, 郭豪, 等. 基于公共客运的东北地区城市陆路网络联系与中心性分析[J]. 经济地理, 2016,36(2):67-73.
[
|
[5] |
焦华富, 杨成凤. 皖江城市带区内公路交通空间组织[J]. 地理研究, 2012,31(6):1066-1078.
[
|
[6] |
高鑫, 修春亮, 魏冶, 等. 基于高速公路货流数据的重庆市区县关联网络格局研究[J]. 人文地理, 2016,31(1):73-80.
[
|
[7] |
朱桃杏, 吴殿廷, 马继刚, 等. 京津冀区域铁路交通网络结构评价[J]. 经济地理, 2011,31(4):561-565,572.
[
|
[8] |
|
[9] |
|
[10] |
刘莉文, 张明. 高速铁路对中国城市可达性和区域经济的影响[J]. 国际城市规划, 2017,32(4):76-81+89.
[
|
[11] |
徐银凤, 汪德根. 中国城市空间结构的高铁效应研究进展与展望[J]. 地理科学进展, 2018,37(9):1216-1230.
[
|
[12] |
王列辉, 夏伟, 宁越敏. 中国高铁城市分布格局非均衡性分析——基于与普通铁路对比的视角[J]. 城市发展研究, 2017,24(7):68-78.
[
|
[13] |
初楠臣, 张平宇, 姜博. 基于日高铁流量视角的中国高速铁路网络空间特征[J]. 地理研究, 2018,37(11):2193-2205.
[
|
[14] |
蒋海兵, 祁毅, 李传武. 中国城市高速铁路客运的空间联系格局[J]. 经济地理, 2018,38(7):26-33.
[
|
[15] |
文嫮, 韩旭. 高铁对中国城市可达性和区域经济空间格局的影响[J]. 人文地理, 2017,32(1):99-108.
[
|
[16] |
姜博, 初楠臣. 哈大高铁对区域可达性影响及空间格局演变[J]. 城市规划, 2015,39(11):92-98.
[
|
[17] |
初楠臣, 姜博, 赵映慧, 等. 城际高铁对未来黑龙江城镇体系空间格局的影响及优化[J]. 经济地理, 2016,36(4):78-83,125.
[
|
[18] |
郭建科, 王绍博, 李博, 等. 哈大高铁对东北城市旅游经济联系的空间影响[J]. 地理科学, 2016,36(4):521-529.
[
|
[19] |
张萌萌, 孟晓晨. 高速铁路对中国城市市场潜力的影响——基于铁路客运可达性的分析[J]. 地理科学进展, 2014,33(12):1650-1658.
[
|
[20] |
穆成林, 陆林, 黄剑锋, 等. 高铁网络下的长三角旅游交通格局及联系研究[J]. 经济地理, 2015,35(12):193-202.
[
|
[21] |
陈建军, 郑广建, 刘月. 高速铁路对长江三角洲空间联系格局演化的影响[J]. 经济地理, 2014,34(8):54-60,67.
[
|
/
〈 |
|
〉 |