Spatial Differentiation of Supporting Service Value of Coastal Wetland Ecosystem in the Caofeidian District of Tangshan in Hebei Province
Received date: 2020-05-12
Revised date: 2020-11-14
Online published: 2021-07-15
Supported by
National Social Science Fundation of China(18CTJ009)
Copyright
In this article, conditional value method and conditional logit model are applied to assess the supporting service value of coastal wetland ecosystem in Caofeidian District, and log-linear and exponential distance decay models are applied to analyzing the supporting value spatial evolution path and regional difference. The results show that wetland vegetation restoration has the greatest influence on the protection behavior choice of supporting service, followed by the effect of wetland area restoration and biodiversity protection. Two supporting service protection plans are obtained according to the regression results. The first one combines the options of ‘small-scale wetland area restoration, small-scale wetland vegetation restoration and small-scale biodiversity protection’ and generates a value of 44.54 Yuan per person per year. The second one combines the options of ‘small-scale wetland area restoration, large-scale wetland vegetation restoration and small-scale biodiversity protection’ and generates a value of 46.57 Yuan per person per year. The values are regard as the source value of the coastal wetland ecosystem supporting service and they gradually decay as the spatial distance from the investigation site increase. The decay processes of the supporting service value at different spatial scales are significantly different, the smaller the spatial scale is, the faster the decay rate is. Supporting service constructs economic jurisdictions according to the value decay processes. The economic jurisdictions do not coincide with the administrative boundaries. The supporting service value in the same administrative region also shows significant differences. Supporting service protection is considered well-being enhancing for the whole society, there exist some other factors affecting the value spatial differencing process besides the distance, such as the economic development level, the wetland resource endowment and the local natural conditions. Nevertheless, the results obtained in this article can provide meaningful reference for future coastal wetland ecosystem management and prove useful as an input to the ongoing debate concerning the future regional sustainable development and ecological civilization construction.
Wei Qiang , Xi Zenglei , Su Hanyun , Miao Yahui , Cao Yiran . Spatial Differentiation of Supporting Service Value of Coastal Wetland Ecosystem in the Caofeidian District of Tangshan in Hebei Province[J]. SCIENTIA GEOGRAPHICA SINICA, 2021 , 41(5) : 890 -899 . DOI: 10.13249/j.cnki.sgs.2021.05.017
表1 曹妃甸滨海湿地生态系统支持服务核心要素保护与支付意愿方案设置Table 1 Survey scenarios design of core elements protection and WTP of coastal wetland ecosystem supporting service in Caofeidian |
核心要素 | 备选方案 | 方案描述 |
支持服务保护态度 | 反对 | 认为滨海湿地生态系统支持服务保护降低了生活水平,影响生计,反对进行保护 |
中立 | 认为是否进行滨海湿地生态系统支持服务保护与自身无关,是否采取保护措施无所谓 | |
支持 | 认为滨海湿地生态系统支持服务保护对经济发展和居民生活具有积极效应,支持进行保护 | |
湿地面积恢复 | 维持现状 | 维持现有湿地面积不变 |
低强度 | 有序开展湿地面积恢复,有效调节利益相关者之间冲突,湿地生态系统功能得到逐步恢复 | |
高强度 | 大力推进湿地面积恢复,利益相关者之间冲突较为激烈,湿地生态系统功能得到快速恢复 | |
生物多样性保护 | 维持现状 | 珍稀鸟类、鱼类等物种数量维持当前水平 |
低强度 | 控制人类活动,逐渐恢复震旦鸦雀、东方白鹳等濒危珍稀物种数量 | |
高强度 | 禁止人类活动,大力开展珍稀濒危野生动植物的救护、驯化、繁育和招引等工作,物种种类和数量得到快速恢复 | |
湿地植被恢复 | 维持现状 | 植被数量和种类维持在当前水平 |
低强度 | 有序开展野大豆、猫眼草等国家重点湿地植被保护工作,有效发挥湿地植被的经济和环境效应 | |
高强度 | 大力开展湿地植被保护与恢复工作,抢救濒危野生植物资源,充分发挥湿地植被的经济和环境效应 | |
支付意愿 | 0元、20元、50元、100元、200元、500元 | 每年愿意为曹妃甸滨海湿地生态系统支持服务保护所支付的价格 |
表2 随机效应logit模型回归结果Table 2 Results of conditional logit model |
自变量 | 回归系数 | 标准差 | EXP(B) | MWTP |
注:*、**、***分别表示在10%、5%、1%的显著性水平上显著;XArea 为湿地面积恢复;XVeg 为湿地植被恢复;XBio 为生物多样性保护;XCost 为支付意愿;—为无此项。 | ||||
β0 | −1.413 | 0.286 | 0.243 | — |
XArea1 | 0.692** | 0.096 | 1.998 | 16.88 |
XArea2 | 0.045 | 0.203 | 1.046 | 1.09 |
XVeg1 | 0.727** | 0.111 | 2.069 | 17.73 |
XVeg2 | 0.81* | 0.118 | 2.247 | 19.76 |
XBio1 | 0.407*** | 0.093 | 1.502 | 9.93 |
XBio2 | 0.094 | 0.127 | 1.098 | 2.29 |
XCost | −0.041*** | 0.002 | 0.959 | — |
1 |
Millennium Ecosystem Assessment. Ecosystems and human well-being[M]. Washington, DC: Island Press, 2005.
|
2 |
Wallace K J. Classification of ecosystem services: Problems and solutions[J]. Biological Conservation, 2007, 139 (3-4): 235-246.
|
3 |
Adhikari K, Hartemink A E. Linking soils to ecosystem services—A global review[J]. Geoderma, 2016, 262: 101-111.
|
4 |
Jorge A Villa, Blanca Bernal. Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework[J]. Ecological Engineering, 2018, 114: 115-128.
|
5 |
郭付友, 吕晓, 于伟, 等. 山东省绿色发展水平绩效评价与驱动机制——基于17地市面板数据[J]. 地理科学, 2020, 40 (2): 200-210.
Guo Fuyou, Lyu Xiao, Yu Wei et al. Performance evaluation and driving mechanism of green development in Shandong Province based on panel data of 17 cities[J]. Scientia Geographica Sinica, 2020, 40 (2): 200-210.
|
6 |
程敏, 张丽云, 崔丽娟, 等. 滨海湿地生态系统服务及其价值评估研究进展[J]. 生态学报, 2016, 36 (23): 7509-7518.
Cheng Min, Zhang Liyun, Cui Lijuan et al. Progress in ecosystem services value valuation of coastal wetlands[J]. Acta Ecologica Sinica, 2016, 36 (23): 7509-7518.
|
7 |
马田田, 梁晨, 李晓文, 等. 围填海活动对中国滨海湿地影响的定量评估[J]. 湿地科学, 2015, 13 (6): 653-659.
Ma Tiantian, Liang Chen, Li Xiaowen et al. Quantitative assessment of impacts of reclamation activities on coastal wetlands in China[J]. Wetland Science, 2015, 13 (6): 653-659.
|
8 |
刘瑾, 叶思源, 王家生. 辽河三角洲滨海湿地有机碳的时空演变、环境功能及其埋藏机制[J]. 地球学报, 2017, 38 (S1): 83-86.
Liu Jin, Ye Siyuan, Wang Jiasheng. Organic carbon distribution, function and its burial processes in the coastal wetlands of the Liaohe Delta, Northeast of China[J]. Acta Geoscientia Sinica, 2017, 38 (S1): 83-86.
|
9 |
徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018, 38 (3): 1148-1162.
Xu Caiyao, Pu Lijie, Zhu Ming. Effect of reclamation activity on coastal ecological environment: Progress and perspectives[J]. Acta Ecologica Sinica, 2018, 38 (3): 1148-1162.
|
10 |
Sills J, Curnick D J, Pettorelli N et al. The value of small mangrove patches[J]. Science, 2019, 363 (6424): 239-239.
|
11 |
Barbier E B, Koch E W, Silliman B R et al. Coastal ecosystem-based management with nonlinear ecological functions and values[J]. Science, 2008, 319 (5861): 321-323.
|
12 |
王书可. 三江平原湿地生态系统健康评价与管理研究[D]. 哈尔滨: 东北林业大学, 2016.
Wang Shuke. Research on Sanjiang plain wetland ecosystem health evaluation and management. Harbin: Northeast Forestry University, 2016.
|
13 |
Fennessy M S, Jacobs A D, Kentula M E. An evaluation of rapid methods for assessing the ecological condition of wetlands[J]. Wetlands, 2007, 27 (3): 543-560.
|
14 |
De Jesús CrespoR, Méndez LázaroP, Yee S H. Linking wetland ecosystem services to vector-borne disease: Dengue fever in the San Juan Bay Estuary, Puerto Rico[J]. Wetlands, 2019, 39: 1281-1293.
|
15 |
Skaff N K, Cheruvelil K S. Fine-scale wetland features mediate vector and climate-dependent macroscale patterns in human West Nile virus incidence[J]. Landscape Ecology, 2016, 31 (7): 1615-1628.
|
16 |
朱四喜. 人工湿地中生物多样性与生态系统功能关系研究[D]. 杭州: 浙江大学, 2011.
Zhu Sixi. Studies on the relationships between biodiversity and ecosystem function in a full-scale constructed wetland. Hangzhou: Zhejiang University, 2011.
|
17 |
Sutton-Grier A E, Sandifer P A. Conservation of wetlands and other coastal ecosystems: A commentary on their value to protect biodiversity, reduce disaster impacts, and promote human health and well-being[J]. Wetlands, 2019, 39 (6): 1295-1302.
|
18 |
张绪良, 张朝晖, 徐宗军, 等. 黄河三角洲滨海湿地植被的碳储量和固碳能力[J]. 安全与环境学报, 2012, 12 (6): 145-149.
Zhang Xuliang, Zhang Chaohui, Xu Zongjun et al. On the relation between carbon storage and reinforced fixation of the coastal wetland vegetation in the Yellow River Delta area[J]. Journal of Safety and Environment, 2012, 12 (6): 145-149.
|
19 |
Osland M J, Gabler C A, Grace J B et al. Climate and plant controls on soil organic matter in coastal wetlands[J]. Global Change Biology, 2018, 24 (11): 5361-5379.
|
20 |
Rodríguez J P, Beard Jr T D, Bennett E M et al. Trade-offs across space, time, and ecosystem services[J]. Ecology and society, 2006, 11 (1): 709-723.
|
21 |
张宏锋, 欧阳志云, 郑华. 生态系统服务功能的空间尺度特征[J]. 生态学杂志, 2007, 26 (9): 1432-1437.
Zhang Hongfeng, Ouyang Zhiyun, Zheng Hua. Spatial scale characteristics of ecosystem services[J]. Chinese Journal of Ecology, 2007, 26 (9): 1432-1437.
|
22 |
郭付友, 佟连军, 刘志刚, 等. 山东省产业生态化时空分异特征与影响因素——基于17地市时空面板数据[J]. 地理研究, 2019, 38 (9): 2226-2238.
Guo Fuyou, Tong LianJun, Liu Zhigang et al. Spatial-temporal pattern and influencing factors of industrial ecology in Shandong Province: Based on panel data of 17 cities[J]. Geographical Research, 2019, 38 (9): 2226-2238.
|
23 |
张国臣, 张义文, 李爽, 等. 基于PSR模型的唐海湿地生态退化评价[J]. 湖北农业科学, 2014, 53 (4): 784-787.
Zhang Guochen, Zhang Yiwen, Li Shuang et al. Based on PSR model degradation assessment of wetland eco-environment in Tanghai[J]. Hubei Agricultural Sciences, 2014, 53 (4): 784-787.
|
24 |
张利. 曹妃甸新区土地生态安全评价与土地利用格局研究[D]. 保定: 河北农业大学, 2015.
Zhang Li. Study on land ecological security assessment and land use pattern of Caofeidian new district. Baoding: Hebei Agricultural University, 2015.
|
25 |
周晨, 李国平. 生态系统服务价值评估方法研究综述——兼论条件价值法理论进展[J]. 生态经济, 2018, 34 (12): 207-214.
Zhou Chen, Li Guoping. A review of evaluation methods of ecosystem services: Also on the theoretical progress of contingent valuation method[J]. Ecological Economy, 2018, 34 (12): 207-214.
|
26 |
查爱苹, 邱洁威, 黄瑾. 条件价值法若干问题研究[J]. 旅游学刊, 2013, 28 (4): 25-34.
Zha Aiping, Qiu Jiewei, Huang Jin. Several problems regarding contingent valuation method[J]. Tourism Tribune, 2013, 28 (4): 25-34.
|
27 |
高琴, 敖长林, 毛碧琦, 等. 基于计划行为理论的湿地生态系统服务支付意愿及影响因素分析[J]. 资源科学, 2017, 39 (5): 893-901.
Gao Qin, Ao Changlin, Mao Biqi et al. Analysis of willingness to pay for ecosystem services and influence factors based on the TPB[J]. Resources Science, 2017, 39 (5): 893-901.
|
28 |
韩俊林, 陈励. 随机效应Logistic模型的参数估计[J]. 数量经济技术经济研究, 2005, 22 (1): 93-98.
Han Junlin, Chen Li. Parameters estimation in random effects logistic model[J]. The Journal of Quantitative Technical Economics, 2005, 22 (1): 93-98.
|
29 |
Zia A, Norton B G, Metcalf S S et al. Spatial discounting, place attachment, and environmental concern: Toward an ambit-based theory of sense of place[J]. Journal of Environmental Psychology, 2014, 40: 283-295.
|
30 |
Kozak J P, Lant C L, Shaikh S L et al. The geography of ecosystem service value: The case of the Des Plaines and Cache River wetlands, Illinois[J]. Applied Geography, 2011, 31 (1): 303-311.
|
31 |
Boyd J. Location, location, location: The geography of ecosystem services[J]. Resources, 2008, 170: 10-15.
|
32 |
Pate J, Loomis J B. The effect of distance on willingness to pay values: A case study of wetlands and Salmon in California[J]. Ecological Economics, 1997, 20 (3): 199-207.
|
33 |
Bateman I J, Day B, Georgiou S et al. The aggregation of environmental benefit values: Welfare measures, distance decay and total WTP[J]. Ecological Economics, 2006, 60 (2): 450-460.
|
34 |
敖长林, 陈瑾婷, 焦扬, 等. 生态保护价值的距离衰减性——以三江平原湿地为例[J]. 生态学报, 2013, 33 (16): 5109-5117.
Ao Changlin, Chen Jinting, Jiao Yang et al. The effect of distance on the ecological conservation value: A case study of Sanjiang Plain Wetland[J]. Acta Ecologica Sinica, 2013, 33 (16): 5109-5117.
|
35 |
焦扬, 敖长林, 佟锐, 等. 支付意愿距离衰减效应一次趋势面构建与实证[J]. 系统工程理论与实践, 2016, 36 (7): 1879-1889.
Jiao Yang, Ao Changlin, Tong Rui et al. Construction of trend surface and distance decay effect of willingness to pay[J]. Systems Engineering Theory Practice, 2016, 36 (7): 1879-1889.
|
36 |
游群林, 卢政营. 旅游资源吸引力距离衰减的实证研究——一个多维感知的视角[J]. 江西财经大学学报, 2010, 3: 30-34.
You Qunlin, Lu Zhengying. An empirical study of the decreasing radium attraction of the tourism resources: A multi-dimensional perspective[J]. Journal of Jiangxi University of Finance and Economics, 2010, 3: 30-34.
|
37 |
Costanza R, Pérez-Maqueo O, Martinez M et al. The value of coastal wetlands for hurricane protection[J]. AMBIO: A Journal of the Human Environment, 2008, 37 (4): 241-248.
|
/
〈 |
|
〉 |