Concept and identification of multiple airport systems: A geographical empirical research
Received date: 2022-06-16
Revised date: 2023-01-05
Accepted date: 2023-03-02
Online published: 2023-04-20
Supported by
National Natural Science Foundation of China(42171187)
National Social Science Foundation of China(20&ZD099)
Copyright
Multiple/multi-airport system (MAS), that is, a set of significant airports that serve commercial transport in a metropolitan region regardless of ownership or political control of the individual airports, plays a key role in commercial aviation. According to this definition, there are 3 keywords to describe MAS: 1) a set of two or more significant airports, 2) that serve commercial traffic, and 3) within a metropolitan region. Therefore, MAS is a typical cross-border (or cross-regional) major infrastructure, which can serve more than one city, namely metropolitan area. However, recent studies' MAS identification method is mainly based on the administrative boundary or the spatial/temporal distance between airports. These methods fail to capture the cross-border characteristic, in addition to the typology of airport and city from a spatial perspective, resulting in the identification bias. After sorting out the concept of MAS, this study proposes a two-step search method to identify MAS. Specifically, the first step is to search for a neighboring primary city with the primary airport as the center, and the second step is to search for significant airports within a specific radius centered on the primary city (i.e., potential center of metropolitan area) obtained in the previous step. With the help of the Annual World Airport Traffic Dataset 2019 and World Cities Database, this study identified the MAS worldwide in 2018 based on the two-step search method. Then, it analyzed the geography of MAS worldwide and its relationship with the place's attributes through geo-visualizing MAS worldwide. The findings are as follows. First, the two-step search method works well, reflecting the relationship between the airport and the metropolitan area. Second, at the metropolitan scale, the maximum reasonable distance between the airport and the primary city can be 70 km; at the city scale, the ultimate reasonable distance between the airport and the city may be 30 km. Third, 59 MAS worldwide in 2018, including 142 civil transport airports, played an essential role in global civil aviation transportation. MAS carries 39.68% of the global throughput, including 3.379 billion passengers and 61 million tons of freight (or air cargo). The average number of airports in the MAS is 2.41. MAS typically contains a large airport with a smaller significant airport. The average airport-city journey time is 39.35 min. Forth, the geography of MAS shows a multicore structure, with most of MAS distributed in coastal areas and regional centers. The detailed characteristics of MAS, such as the transportation volume, the number of airports, and the ground distance between airports and metropolitan area, also shows prominent regional features. Fifth, serval factors, including air transport demand, socio-economic factors, and natural conditions, are jointly related to the geography of MAS. Our findings will pave the way for future research on MAS from a geographic perspective, such as the interaction between MAS and place.
Xiao Fan , Mo Huihui , Wang Jiaoe , Xiong Meicheng . Concept and identification of multiple airport systems: A geographical empirical research[J]. SCIENTIA GEOGRAPHICA SINICA, 2023 , 43(4) : 606 -616 . DOI: 10.13249/j.cnki.sgs.2023.04.004
表1 多机场体系的统计指标Table 1 Description of multiple-airport systems' variables |
指标 | 平均值 | 标准差 | 最小值 | 最大值 |
旅客吞吐量/(万人/a) | 5726.58 | 3945.46 | 1205.11 | 17760.33 |
货物吞吐量/(万t/a) | 103.12 | 125.93 | 0.40 | 638.13 |
当量吞吐量/(万人/a) | 6757.79 | 4992.41 | 1390.14 | 19920.64 |
机场数量/个 | 2.41 | 0.75 | 2.00 | 6.00 |
港−城欧氏距离/km | 27.97 | 9.33 | 7.82 | 48.23 |
港−城道路距离/km | 37.89 | 12.19 | 10.75 | 64.05 |
港−城车程时间/min | 39.35 | 10.52 | 17.5 | 65.33 |
表2 全球多机场体系空间分布Table 2 Geography of multiple-airport systems worldwide |
区域 | 国家 | 多机场体系当量吞吐量/(亿人次/a) |
注:计算国家多机场体系数量时,跨境多机场体系被划入都市圈内机场业务量最显著的国家。 | ||
亚太地区 | 中国 | 深圳−香港−澳门(1.95)、上海(1.59)、北京(1.28)、 台北(0.76)、厦门−漳州−泉州(0.38) |
日本 | 东京(1.66)、大阪(0.58)、福冈−北九州(0.30)、 名古屋(0.15) | |
韩国 | 首尔(1.24)、釜山(0.18) | |
马来西亚 | 吉隆坡(0.70) | |
泰国 | 曼谷(1.20) | |
印度尼西亚 | 雅加达(0.81) | |
新加坡−马来西亚 | 新加坡−新山(0.91) | |
欧洲 | 荷兰 | 阿姆斯特丹−鹿特丹(0.90) |
法国 | 巴黎(1.32) | |
德国 | 科隆−杜塞尔多夫(0.46)、柏林(0.35) | |
英国 | 伦敦(1.99)、曼彻斯特−利兹−利物浦(0.39)、 格拉斯哥−爱丁堡(0.25)、伯明翰(0.22) | |
比利时 | 布鲁塞尔(0.39) | |
波兰 | 华沙−莫德林(0.22) | |
乌克兰 | 基辅(0.16) | |
意大利 | 米兰(0.54)、罗马(0.51)、威尼斯(0.15) | |
俄罗斯 | 莫斯科(1.03) | |
西班牙 | 圣·克鲁斯(0.17)、穆尔西亚(0.15) | |
瑞典 | 斯德哥尔摩(0.30) | |
土耳其 | 伊斯坦布尔(1.16) | |
丹麦−瑞典 | 哥本哈根−马尔默(0.36) | |
奥地利−斯洛伐克 | 维也纳−布拉迪斯拉发(0.32) | |
拉美地区 | 阿根廷 | 布宜诺斯艾利斯(0.27) |
巴西 | 圣保罗(0.71)、里约热内卢(0.26) | |
中东地区 | 伊朗 | 德黑兰(0.25) |
阿拉伯联合酋长国 | 迪拜(1.39) | |
以色列 | 特拉维夫(0.27) | |
巴林−沙特阿拉伯 | 巴林−阿德达曼(0.23) | |
北美地区 | 美国 | 纽约(1.61)、洛杉矶(1.30)、芝加哥(1.24)、 迈阿密(1.03)、旧金山(0.98)、达拉斯(0.95)、 华盛顿(0.79)、休斯顿(0.64)、奥兰多(0.53)、 菲尼克斯(0.50)、坦帕(0.27)、萨克拉门托(0.14) |
加拿大 | 多伦多(0.58)、蒙特利尔(0.22) | |
美国−墨西哥 | 圣地亚哥−蒂华纳(0.34) | |
加拿大−美国 | 温哥华−阿博斯福−贝灵汉(0.31) |
图4 全球各区域不同类型机场与都市圈的时间距离Fig. 4 Duration between metropolitan and (mega and significant) airports within multiple-airport system worldwide |
表3 全球多机场体系组织模式Table 3 Patterns of multiple-airport systems worldwide |
大型机场数量/个 | |||||
1 | 2 | 3 | 4 | ||
注:—为单个机场,非多机场体系。 | |||||
其他机场 数量/个 | 0 | — | 柏林、东京、科隆−杜塞尔多夫、迈阿密、曼谷、上海、圣保罗、首尔、休斯顿、伊斯坦布尔、芝加哥 | 华盛顿、旧金山 | 无 |
1 | 阿姆斯特丹−鹿特丹、奥兰多、巴林−阿德达曼、北京、伯明翰、布鲁塞尔、德黑兰、多伦多、菲尼克斯、釜山、哥本哈根、华沙−莫德林、基辅、吉隆坡、里约热内卢、罗马、蒙特利尔、名古屋、穆尔西亚、萨克拉门托、厦门−漳州−泉州、圣·克鲁斯、圣地亚哥−蒂华纳、斯德哥尔摩、台北、特拉维夫、威尼斯、维也纳、新加坡−新山、雅加达 | 巴黎、布宜诺斯艾利斯、达拉斯、大阪、迪拜、米兰、深圳−香港−澳门 | 莫斯科、纽约 | 无 | |
2 | 福冈−北九州、格拉斯哥−爱丁堡、曼彻斯特−利兹−利物浦、坦帕、温哥华 | 洛杉矶 | 无 | 伦敦 |
表4 全球各区域多机场体系的紧凑程度Table 4 Distance between metropolitan and airports within multiple-airport system worldwide |
区域 | 欧氏距离/km | 道路距离/km | 车程时间/min |
亚太地区 | 30.42 | 43.52 | 47.05 |
欧洲 | 30.76 | 40.85 | 44.02 |
拉美地区 | 16.92 | 22.96 | 27.50 |
中东地区 | 33.69 | 45.72 | 45.44 |
北美地区 | 27.57 | 37.98 | 36.00 |
[1] |
尹稚, 袁昕, 卢庆强, 等. 中国都市圈发展报告2018[M]. 北京: 清华大学出版社, 2019.
Yin Zhi, Yuan Xin, Lu Qingqiang et al. China metropolitan development report 2018. Beijing: Tsinghua University Press, 2019.
|
[2] |
王姣娥, 莫辉辉. 航空运输地理学研究进展与展望[J]. 地理科学进展, 2011, 30(6): 670-680.
Wang Jiaoe, Mo Huihui. Geography of air transportation: Retrospect & prospect. Progress in Geography, 2011, 30(6): 670-680.
|
[3] |
De Neufville R. Planning for multiple airports in a metropolitan region[J]. Built Environment, 1984, 10(3): 159-167.
|
[4] |
De Neufville R. Management of multi-airport systems: A development strategy[J]. Journal of Air Transport Management, 1995, 2(2): 99-110.
|
[5] |
Hansen M, Weidner T. Multiple airport systems in the United States: Current status and future prospects[J]. Transportation Research Record, 1995, 1506(1): 8-17.
|
[6] |
De Neufville R, Odoni A R. Airport systems: Planning, design, and management[M]. New York: McGraw-Hill Education, 2003.
|
[7] |
Bonnefoy P A. Scalability of the air transportation system and development of multi-airport systems: A worldwide perspective[D]. U S, Cambridge, Massachusetts: Massachusetts Institute of Technology, 2008.
|
[8] |
Dobruszkes F, Grippa T, Hanaoka S et al. Multiple-airport systems: The (re) development of older airports in view of noise pollution issues[J]. Transport Policy, 2021, 114: 298-311.
|
[9] |
Fasone V, Giuffrè T, Maggiore P. Multi-airport system as a way of sustainability for airport development: Evidence from an Italian case study[J]. Procedia-Social and Behavioral Sciences, 2012, 53: 96-105.
|
[10] |
Harvey G. Airport choice in a multiple airport region[J]. Transportation Research Part A: General, 1987, 21(6): 439-449.
|
[11] |
Bonnefoy P A, De Neufville R, Hansman R J. Evolution and development of multiairport systems: Worldwide perspective[J]. Journal of Transportation Engineering, 2010, 136(11): 1021-1029.
|
[12] |
O'Connor K, Fuellhart K. Airports and regional air transport markets: A new perspective[J]. Journal of Transport Geography, 2016, 53(C): 78-82.
|
[13] |
Sun X, Wandelt S, Hansen M et al. Multiple airport regions based on inter-airport temporal distances[J]. Transportation Research Part E:Logistics and Transportation Review, 2017, 101: 84-98.
|
[14] |
曹小曙, 廖望. 全球多机场区域空间格局与类型划分[J]. 地理科学进展, 2018, 37(11): 1473-1484.
Cao Xiaoshu, Liao Wang. Spatial pattern and classification of the worldwide multi-airport regions. Progress in Geography, 2018, 37(11): 1473-1484.
|
[15] |
Fuellhart K, O'Connor K. A supply-side categorization of airports across global multiple-airport cities and regions[J]. GeoJournal, 2019, 84(1): 15-30.
|
[16] |
Attaalla F A H. Multi-airport systems as a global tourism phenomenon: A critical review and a new concept[J]. Minia Journal of Tourism and Hospitality Research, 2018, 3(1): 1-18.
|
[17] |
王姣娥, 莫辉辉, 金凤君. 世界机场空间格局及对中国的启示[J]. 世界地理研究, 2008(3): 8-18.
Wang Jiaoe, Mo Huihui, Jin Fengjun. Spatial pattern of the worldwide airports and its enlightenment. World Regional Studies, 2008(3): 8-18.
|
[18] |
王姣娥, 陈娱, 戴特奇, 等. 中国交通地理学的传承发展与创新[J]. 经济地理, 2021, 41(10): 59-69.
Wang Jiaoe, Chen Yu, Dai Teqi et al. Inheritance, development and innovation of transport geography in China. Economic Geography, 2021, 41(10): 59-69.
|
[19] |
莫辉辉, 王姣娥, 高超, 等. 机场群研究进展与展望[J]. 地理科学进展, 2021, 40(10): 1761-1770.
Mo Huihui, Wang Jiaoe, Gao Chao et al. Airport agglomeration research: A review and prospect. Progress in Geography, 2021, 40(10): 1761-1770.
|
[20] |
Luo W, Wang F. Measures of spatial accessibility to health care in a GIS environment: Synthesis and a case study in the Chicago region[J]. Environment and Planning B: Planning and Design, 2003, 30(6): 865-884.
|
[21] |
FAA (Federal Aviation Administration). Planning the metropolitan airport (150/5070-5) [EB/OL]. 1970-05-22 [2022-03-14]. https://www.faa.gov/airports/resources/advisory_circulars/index.cfm/go/document.information/documentNumber/150_5070-5.
|
[22] |
Appold S J, Kasarda J D. The airport city phenomenon: Evidence from large US airports[J]. Urban Studies, 2013, 50(6): 1239-1259.
|
[23] |
宗林. 城市航空港规划[M]. 北京: 中国建筑工业出版社, 1988.
Zong Lin. Urban airport planning. Beijing: China Construction Industry Press, 1988.
|
[24] |
Kasarda J D, Lindsay G. Aerotropolis: The way we'll live next[M]. New York: Farrar, Straus and Giroux, 2011.
|
[25] |
Bacon R F, Perrett E B. The national airport system plan—Its history and its potential[R/OL]. SAE Technical Paper, 1971. https://doi.org/10.4271/710414.
|
[26] |
Mayer R. Airport classification based on cargo characteristics[J]. Journal of Transport Geography, 2016, 54: 53-65.
|
[27] |
Fromme W R. Satellite airports: Analysis of development potential[M]. Washington: Department of Transportation, Federal Aviation Administration, Office of Aviation Policy, 1976.
|
[28] |
De Neufville R. Planning multi-airport systems in metropolitan regions in the 1990s[R]. U S, WashingtonD C: Final Report for the US Federal Aviation Administration, 1994.
|
[29] |
廖望, 曹小曙, 林雄斌, 等. 旅客机场选择行为意向的形成机制——以粤港澳大湾区为例[J]. 地理科学, 2021, 41(12): 2107-2116.
Liao Wang, Cao Xiaoshu, Lin Xiongbin et al. Investigating passengers' behavioral intention of reusing an airport: The case of Guangdong-Hong Kong-Macao Greater Bay Area. Scientia Geographica Sinica, 2021, 41(12): 2107-2116.
|
[30] |
Loo B P Y. Passengers' airport choice within multi-airport regions (MARs): Some insights from a stated preference survey at Hong Kong International Airport[J]. Journal of Transport Geography, 2008, 16(2): 117-125.
|
[31] |
De Neufville R, Odoni A R, Belobaba P P et al. Airport systems: Planning, design, and management[M]. New York: McGraw-Hill Education, 2013.
|
[32] |
王姣娥, 景悦, 杨浩然. 中国高铁−民航竞争网络的空间演化模式及影响因素[J]. 地理科学, 2020, 40(5): 675-684.
Wang Jiaoe, Jing Yue, Yang Haoran. The evolution mode of China's HSR-air competitive network and its driving factors. Scientia Geographica Sinica, 2020, 40(5): 675-684.
|
[33] |
Dobruszkes F, Vandermotten C. Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide[J]. Journal of Air Transport Management, 2022, 99: 102178
|
[34] |
姜海宁, 蔡诗瑶, 李博. 长三角民用机场体系位序−规模分布及其作用机制[J]. 地理科学, 2021, 41(4): 615-624.
Jiang Haining, Cai Shiyao, Li Bo. The rank-size distribution of civil airport system and its mechanism in the Yangtze River Delta. Scientia Geographica Sinica, 2021, 41(4): 615-624.
|
[35] |
Lieshout R, Malighetti P, Redondi R et al. The competitive landscape of air transport in Europe[J]. Journal of Transport Geography, 2016, 50: 68-82.
|
[36] |
王姣娥, 金凤君, 孙炜, 等. 中国机场体系的空间格局及其服务水平[J]. 地理学报, 2006, 61(8): 829-838.
Wang Jiaoe, Jin Fengjun, Sun Wei et al. Research on spatial distribution and service level of Chinese airport system. Acta Geographica Sinica, 2006, 61(8): 829-838.
|
[37] |
莫辉辉, 王姣娥, 彭峥, 等. 机场群航线网络竞合评价方法及实证探讨——以粤港澳大湾区世界级机场群为例[J]. 热带地理, 2022, 42(11): 1797-1805.
Mo Huihui, Wang Jiaoe, Peng Zheng et al. Co-opetition on airport agglomeration's air transport network: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Tropical Geography, 2022, 42(11): 1797-1805.
|
/
〈 |
|
〉 |