Influence of the Bohai Strait Cross-sea Channel on carbon emission and emission reduction potential of road logistics in interregional urban agglomerations at the time of the Carbon Peak
Received date: 2022-05-24
Revised date: 2022-09-12
Accepted date: 2023-08-05
Online published: 2024-04-08
Supported by
National Natural Science Foundation of China(41871163)
Natural Science Foundation of Shandong Province(ZR2020MD009)
Copyright
Taking the “Carbon Peak” in 2030 as the research time point, the IPCC “bottom to up” method and social network analysis method are used to explore the network pattern of carbon emission and emission reduction potential of interregional urban agglomerations road logistics under different channel scenarios, and to analyze the influence of the Bohai Channel on it. The research shows that: 1) Differences in the carbon emission network of interregional urban agglomerations road logistics of different channel scenarios in 2030: Under the Land Channel scenario, the carbon exchange of interregional urban agglomerations is concentrated in the economic and traffic developed axes and the endpoint cities of the Bohai Strait; under the Land-Sea Channel scenario, the interregional carbon exchange is concentrated in cities adjacent to the Land Channel; The Bohai Channel improves the high energy consumption situation pointed by the “Bohai Strait endpoint cities” of the interregional urban agglomerations. 2) The network pattern of road logistics emission reduction potential in interregional urban agglomerations in 2030: with Dalian as the emission reduction pivot and the Bohai Strait as the center, strong emission reduction city pairs are more in the south than in the north, and there are zero emission reduction city pairs; The Bohai Channel mainly exerts carbon emission reduction influence on other cities through endpoint cities. However, its influence on the carbon emission reduction of some cities of far away from it and on the edge of road logistics is relatively limited.
Shi Chao , Sun Haiyan , Wei Tongfeng , Qin Weishan , Wang Yumei , Wang Fuxi . Influence of the Bohai Strait Cross-sea Channel on carbon emission and emission reduction potential of road logistics in interregional urban agglomerations at the time of the Carbon Peak[J]. SCIENTIA GEOGRAPHICA SINICA, 2024 , 44(3) : 391 -399 . DOI: 10.13249/j.cnki.sgs.20220617
表1 交通碳排放预测指标Table 1 Introduction to predictors of traffic carbon emission |
序号 | 指标 | 单位 | 序号 | 指标 | 单位 | |
1 | GDP | 亿元 | 7 | 公路货运量 | 万t | |
2 | 人口 | 万人 | 8 | 公路里程 | km | |
3 | 城镇化率 | % | 9 | 批发和零售业 | 亿元 | |
4 | 第一产业 | 亿元 | 10 | 限额以上商品销售总额 | 万元 | |
5 | 第二产业 | 亿元 | 11 | 邮电业务总量 | 亿元 | |
6 | 第三产业 | 亿元 | 12 | 标准货车每百公里能耗 | L/100 km |
表2 2030年陆上与陆海通道公路物流碳排放网络中心度Table 2 Land and land-sea channel outdegree and indegree of road logistics carbon emission in 2030 |
排名 | 出度中心度 | 入度中心度 | |||||||
城市 | 陆上通道 | 城市 | 陆海通道 | 城市 | 陆上通道 | 城市 | 陆海通道 | ||
1 | 大连 | 86152.469 | 沈阳 | 67570.273 | 济南 | 85552.000 | 济南 | 81939.883 | |
2 | 沈阳 | 70489.953 | 鞍山 | 53599.074 | 潍坊 | 61993.926 | 沈阳 | 55712.887 | |
3 | 鞍山 | 58044.500 | 大连 | 53401.160 | 沈阳 | 61348.125 | 潍坊 | 52474.906 | |
4 | 烟台 | 41810.258 | 淄博 | 37180.836 | 淄博 | 48200.664 | 淄博 | 46189.578 | |
5 | 青岛 | 40039.645 | 青岛 | 31395.631 | 东营 | 41149.203 | 东营 | 39349.664 | |
6 | 淄博 | 37969.488 | 烟台 | 26475.408 | 大连 | 39853.320 | 青岛 | 28930.588 | |
7 | 潍坊 | 29897.125 | 潍坊 | 26352.768 | 青岛 | 39579.477 | 鞍山 | 22945.035 | |
8 | 营口 | 26082.291 | 营口 | 23946.928 | 烟台 | 31180.172 | 大连 | 22390.543 | |
9 | 日照 | 24625.500 | 辽阳 | 22662.195 | 鞍山 | 26398.043 | 营口 | 17759.785 | |
10 | 辽阳 | 24242.955 | 济南 | 22282.391 | 营口 | 20426.359 | 烟台 | 17708.324 | |
11 | 济南 | 22760.563 | 日照 | 20131.793 | 盘锦 | 19133.771 | 盘锦 | 17459.283 | |
12 | 本溪 | 20207.756 | 盘锦 | 19096.877 | 辽阳 | 15387.169 | 辽阳 | 13628.572 | |
13 | 盘锦 | 19982.793 | 本溪 | 18569.041 | 威海 | 14559.467 | 铁岭 | 10412.640 | |
14 | 威海 | 16904.479 | 东营 | 11525.320 | 日照 | 12280.013 | 日照 | 9389.786 | |
15 | 丹东 | 12046.392 | 威海 | 10974.445 | 铁岭 | 11954.350 | 本溪 | 9329.944 | |
16 | 东营 | 11796.396 | 丹东 | 9722.884 | 本溪 | 10762.180 | 抚顺 | 8825.813 | |
17 | 抚顺 | 8974.199 | 抚顺 | 8323.757 | 丹东 | 10438.387 | 威海 | 8562.979 | |
18 | 铁岭 | 8271.627 | 铁岭 | 7653.526 | 抚顺 | 10101.744 | 丹东 | 7854.089 |
表3 2030年区际城市群公路物流碳减排网络中心度Table 3 Outdegree and indegree of carbon reduction of road logistics in interregional urban agglomerations in 2030 |
排名 | 出度中心度 | 入度中心度 | |||
城市 | 减排潜力 | 城市 | 减排潜力 | ||
1 | 大连 | 32751.307 | 大连 | 17462.781 | |
2 | 烟台 | 15334.848 | 烟台 | 13471.848 | |
3 | 青岛 | 8644.007 | 青岛 | 10648.891 | |
4 | 威海 | 5930.034 | 潍坊 | 9519.018 | |
5 | 日照 | 4493.709 | 威海 | 5996.490 | |
6 | 鞍山 | 4445.426 | 沈阳 | 5635.241 | |
7 | 潍坊 | 3544.362 | 济南 | 3612.114 | |
8 | 沈阳 | 2919.681 | 鞍山 | 3453.006 | |
9 | 丹东 | 2323.507 | 日照 | 2890.227 | |
10 | 营口 | 2135.363 | 营口 | 2666.574 | |
11 | 本溪 | 1638.714 | 丹东 | 2584.299 | |
12 | 辽阳 | 1580.760 | 淄博 | 2011.087 | |
13 | 盘锦 | 885.914 | 东营 | 1799.542 | |
14 | 淄博 | 788.654 | 辽阳 | 1758.597 | |
15 | 抚顺 | 650.443 | 盘锦 | 1674.490 | |
16 | 铁岭 | 618.100 | 铁岭 | 1541.708 | |
17 | 济南 | 478.173 | 本溪 | 1432.236 | |
18 | 东营 | 271.076 | 抚顺 | 1275.932 |
[1] |
杨文越, 曹小曙. 多尺度交通出行碳排放影响因素研究进展[J]. 地理科学进展, 2019, 38(11): 1814-1828.
Yang Wenyue, Cao Xiaoshu. Progress of research on influencing factors of CO2 emissions from multi-scale transport. Progress in Geography, 2019, 38(11): 1814-1828.
|
[2] |
蒋自然, 金环环, 王成金, 等. 长江经济带交通碳排放测度及其效率格局(1985—2016年)[J]. 环境科学, 2020, 41(6): 2972-2980.
Jiang Ziran, Jin Huanhuan, Wang Chengjin et al. Measurement of traffic carbon emissions and pattern of efficiency in the Yangtze River Economic Belt (1985—2016). Environmental Science, 2020, 41(6): 2972-2980.
|
[3] |
杨文越, 李涛, 曹小曙. 中国交通CO2排放时空格局演变及其影响因素——基于2000—2012年30个省(市)面板数据的分析[J]. 地理科学, 2016, 36(4): 491-501.
Yang Wenyue, Li Tao, Cao Xiaoshu. The evolution of spatial-temporal characteristics and influence factors of CO2 emissions from transport in China: A panel data analysis of 30 provinces in China from 2000 to 2012. Scientia Geographica Sinica, 2016, 36(4): 491-501.
|
[4] |
Silvio N, Cayetano R, Federico C. Assessing carbon emissions from road transport through traffic flow estimators[J]. Transportation Research Part C, 2018, 95: 125-148.
|
[5] |
马海涛, 康雷. 京津冀区域公路客运交通碳排放时空特征与调控预测[J]. 资源科学, 2017, 39(7): 1361-1370.
Ma Haitao, Kang Lei. Spatial and temporal characteristics and prediction of carbon emissions from road traffic in the Beijing-Tianjin-Hebei Region. Resources Science, 2017, 39(7): 1361-1370.
|
[6] |
柴彦威, 肖作鹏, 刘志林. 居民家庭日常出行碳排放的发生机制与调控策略——以北京市为例[J]. 地理研究, 2012, 31(2): 334-344.
Chai Yanwei, Xiao Zuopeng, Liu Zhilin. Low-carbon optimization strategies based on CO2 emission mechanism of household daily travels: A case study of Beijing. Geographical Research, 2012, 31(2): 334-344.
|
[7] |
Andreoni V, Galmarini S. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors[J]. Energy, 2012, 45(1): 595-602.
|
[8] |
Keall M, Shaw C, Chapman R et al. Reductions in carbon dioxide emissions from an intervention to promote cycling and walking: A case study from New Zealand[J]. Transportation Research, 2018, 65: 687-696.
|
[9] |
Mulholland E, Teter J, Cazzola P et al. The long haul towards decarbonising road freight—A global assessment to 2050[J]. Applied Energy, 2018, 216: 678-693.
|
[10] |
曹俊文, 周丽. 长三角地区物流业碳排放时空分布及其影响因素研究[J]. 统计与决策, 2021, 37(10): 79-83.
Cao Junwen, Zhou Li. Research on the temporal and spatial distribution and influencing factors of carbon emissions from logistics industry in Yangtze River Delta. Statistics & Decision, 2021, 37(10): 79-83.
|
[11] |
梁晶, 盛慧敏, 吕靖. 环渤海地区物流产业集聚对物流碳排放影响的实证研究[J]. 生态经济, 2020, 36(9): 38-43.
Liang Jing, Sheng Huimin, Lyu Jing. Empirical study on the logistics industry agglomeration to the carbon emission of logistics in the Bohai Rim Region. Ecological Economy, 2020, 36(9): 38-43.
|
[12] |
张得志, 贺润中, 祝伟丽, 等. 基于低碳经济视角的多模式快递物流服务网络优化研究[J]. 铁道科学与工程学报, 2018, 15(6): 1601-1608.
Zhang Dezhi, He Runzhong, Zhu Weili et al. The optimization of the multi-modal express logistics service network under low-carbon economy. Journal of Railway Science and Engineering, 2018, 15(6): 1601-1608.
|
[13] |
朱莉, 马铮, 丁家兰, 等. 低碳理念下基于超网络的物流企业车辆资源合作研究[J]. 科技管理研究, 2016, 36(24): 260-266.
Zhu Li, Ma Zheng, Ding Jialan et al. Supernetwork-based vehicles cooperation optimization among logistics enterprises under low-carbon concept. Science and Technology Management Research, 2016, 36(24): 260-266.
|
[14] |
范月娇. 物流通道的区域经济聚散机制及其集聚效应检验——基于中国11条物流通道的实证[J]. 中国软科学, 2018, 2: 103-117.
Fan Yuejiao. The regional economic agglomeration and diffusion mechanism of logistics corridor and its agglomeration effects—An empirical study based on China’s 11 logistics corridors. China Soft Science, 2018, 2: 103-117.
|
[15] |
孙相军, 戴晓晴, 刘晨, 等. 东北亚跨境物流通道发展现状与展望[J]. 科技导报, 2021, 39(4): 84-89.
Sun Xiangjun, Dai Xiaoqing, Liu Chen et al. Development status and prospect of cross-border logistics corridor in Northeast Asia. Science & Technology Review, 2021, 39(4): 84-89.
|
[16] |
孙峰华, 陆大道, 柳新华, 等. 中国物流发展对渤海海峡跨海通道建设的影响[J]. 地理学报, 2010, 65(12): 1507-1521.
Sun Fenghua, Lu Dadao, Liu Xinhua et al. Influence of the development of China’s logistics on the construction of Trans-Bohai Strait passageway. Acta Geographica Sinica, 2010, 65(12): 1507-1521.
|
[17] |
孙东琪, 陆大道, 王振波, 等. 渤海海峡跨海通道客货流量预测分析[J]. 地理学报, 2017, 72(8): 1486-1507.
Sun Dongqi, Lu Dadao, Wang Zhenbo et al. Predictive analysis of passenger and goods flow of Bohai Strait Cross-sea Channel. Acta Geographica Sinica, 2017, 72(8): 1486-1507.
|
[18] |
王泽东, 张小林, 孙东琪, 等. 渤海海峡跨海通道建设前后区际城市群物流网络结构的时空演变[J]. 地理研究, 2020, 39(3): 585-600.
Wang Zedong, Zhang Xiaolin, Sun Dongqi et al. Spatial-temporal evolution of the logistics network structure of inter-regional urban agglomeration before and after the construction of the Bohai Strait Cross-sea Channel. Geographical Research, 2020, 39(3): 585-600.
|
[19] |
王泽东. “流空间”视角下渤海海峡跨海通道建成前后山东半岛、辽东半岛城市群物流空间差异研究[D]. 烟台: 鲁东大学, 2018.
Wang Zedong. Research on the logistics spatial difference of Shandong Peninsula and East Liaoning Peninsula Urban Agglomeration on the construction of Trans-Bohai strait passageway from “space of flows”. Yantai: Ludong University, 2018.
|
[20] |
孙峰华, 陆大道, 王振波, 等. 渤海海峡跨海通道建设与区域经济发展研究[M]. 北京: 商务印书馆, 2020.
Sun Fenghua, Lu Dadao, Wang Zhenbo et al. Research on the construction of Bohai Strait Cross-sea Channel and the development of regional economy. Beijing: The Commercial Press, 2020.
|
[21] |
周一星. 山东半岛城市群发展战略研究[M]. 北京: 中国建筑工业出版社, 2004.
Zhou Yixing. Study on the development strategy of Shandong Peninsula Urban Agglomeration. Beijing: China Architecture & Building Press, 2004.
|
[22] |
山东省统计局. 山东统计年鉴[M].1991—2021. 北京: 中国统计出版社, 1991—2021.
Shandong Statistical Bureau. Shandong statistical yearbook.1991—2021. Beijing: China Statistics Press, 1991—2021.
|
[23] |
辽宁省统计局. 辽宁统计年鉴[M]. 1991—2020. 北京: 中国统计出版社, 1991—2020.
Liaoning Statistical Bureau. Liaoning statistical yearbook. 1991—2020. Beijing: China Statistics Press, 1991—2020.
|
[24] |
梁经伟, 文淑惠, 方俊智. 中国-东盟自贸区城市群空间经济关联研究——基于社会网络分析法的视角[J]. 地理科学, 2015, 35(5): 521-528.
Liang Jingwei, Wen Shuhui, Fang Junzhi. The spatial economic association of city agglomeration on CAFTA based on the perspective of social network analysis. Scientia Geographica Sinica, 2015, 35(5): 521-528.
|
[25] |
国家统计局. 中国统计年鉴[M]. 1991—2021. 北京: 中国统计出版社, 1991—2021.
National Bureau of Statistics. China statistical yearbook. 1991—2021. Beijing: China Statistics Press, 1991—2021.
|
[26] |
中国汽车技术研究中心有限公司. 节能与新能源汽车发展报告[M]. 北京: 人民邮电出版社, 2021.
China Automotive Technology and Research Center Co. , Ltd. Annual report on energy-saving and new energy vehicle in China. Beijing: Posts & Telecom Press, 2021.
|
[27] |
中国汽车技术研究中心有限公司. 节能与新能源汽车发展报告[M]. 2015—2019. 北京: 人民邮电出版社, 2015—2019.
China Automotive Technology and Research Center Co. , Ltd. Annual report on energy-saving and new energy vehicle in China. 2015—2019. Beijing: Posts & Telecom Press, 2015—2019.
|
/
〈 |
|
〉 |