[1] IPCC. Climate Change 1995-The Science of Climate Change [R]. Summary for Policymakers, 1995. [2] Crill P, Bartlett K, Roulet N. Methane flux from boreal peatlands[J]. Suo, 1992, 43:173-183. [3] Moore K E, Roulet N T. Methane flux: water relations in northern wetlands [J]. Geophys Res Lett, 1993, 20:587-590. [4] Saarnio S, Saarinen T, Vasander H, et al. A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in boreal oligotrophic mire [J]. Global Change Biology, 2000, 6:137-144. [5] Saarnio A, Alm J, Silvola J, et al. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen [ J]. Oecologia, 1997, 110: 414-422. [6] Houweling S, Dentener F, Lelieveld J. Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands [J]. J Geophys Res, 2000, 105:17243-17255. [7] Morrissey L A, Livingston G P. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability [J]. J Geophys Res, 1992, 97(D15): 16661-16670. [8] Chasar L S, Chanton J P. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon dissolved inorganic carbon and CH4 in a northern Minnesota peatland [J]. Global Biogeochemical Cycles, 2000, 14:1095-1108. [9] Chasar L S, Chanton J P, Glaser P H, et al. Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake Agassiz peatland complex [J]. Annals of Botany, 2000, 86:655-66. [10] 赵魁义.中国沼泽志[M].北京:科学出版社,1999. [11] Frenzel P, Karofeld. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation [J]. Biogeochemistry, 2000, 51:91-112. [12] Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their net primary production,seasonality and possible methane emissions [J]. J Atmosph Chem, 1989, 8:307-358. [13] Frenzel P, Rudolph J. Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorium [J]. Plant and Soil, 1998, 202:27-32. [14] 崔宝山.影响沼泽地CH4 排放若干因子初探[J].地理科学,1997,17(5):419~426. [15] Sundh I, Mikkela C, Nilsson M, et al. Potential aerobic methane oxidation in a sphagnum-dominated peatland-controlling factors and relation to methane emission [J]. Soil Biol Biochem, 1995, 27:829-837. [16] Nedwell D, Watson A. CH4 production, oxidation and emission in a UK ombrotrophic peat bog: Influence of SO2-4 from acid rain [J]. Soil Biol Biochem, 1995, 27:893-903. [17] 叶勇,卢昌义,林鹏.海莲红树林土壤CH4 动态研究[J]土壤与环境,2000,9:91~95 [18] 金会军,吴杰,程国栋,等.青藏高原湿地CH4 排放评估[J].科学通报,1999,44:1758~1762. [19] Alm J, Talanov A, Saarnio S, et al. Reconstruction of the carbon balance for micrositas in a boreal oligotrophic pine fen,Finland [J]. Oecologia, 1997, 110:423-431. [20] Moore T R, Dalva M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations [J]. Soil Biol Biochem, 1997, 29(8): 1157-1164. [21] Conrad R, Schutz H, Babbel M. Temperature limitation of hydrogen turnover and methanogensis in anoxic paddy soil [J].FEMS Microbiol Ecol, 1987, 45:281-289. [22] Crill M P, Bartlett K B, Harriss R C, et al. Methane flux from Minnesota peatlands [J]. Global Biogeochemical Cycles,1988, 2:371-384. [23] Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarcctic peat soils: response to temperature and pH [J]. Soil Biol Biochem, 1993,25:321-326. [24] Sebacher D I, Harrias R C, Bartlett K B, et al. Atmospheric methane sources: Alaskan tundra bogs, an Alpine fen and a subartic boreal marsh [J]. Tellus, 1986, 38:1-10. [25] Calhoun A, King G M. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatmacrophytes [J]. Appl Environ Microbiol, 1997, 63:3051-3058. [26] King G M, Roslev P, Skovgard H. Distribution and rate of methane oxidation in sediments of the Florida Everglades [J].Appl Environ Microbiol, 1990, 6: 2902-2911. [27] Harriss R C, Sebacher D J. Methane flux in forested freshwater swamps of the southern United States [J]. Geophys Res Lett, 1981, 8:1002-1004. [28] Bridgham SD, Richardson CJ. Mechanisms controlling soil respiration (CO2 and CH4 ) in southern peatlands [J]. Soil Biol Biochem, 1992, 24:1089-1099. [29] Norton J M, Smith J L, Firestone M K. Carbon flow in the rhizosphere of ponderosa pine seedling [J]. Soil Biol Biochem,1990, 22:449-455. [30] Minoda T, Kimura M. Contribution of photosynthesized carbon to the methane emitted from paddy fields [J]. Geophys Res Lett, 1994, 21:2007-2010. [31] Minoda T, Kimura M. Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields [J]. J Geophys Res, 1996, 101:21091-21097. [32] 崔宝山三江平原沼泽地CH4 排放规律及估算[J]地理科学,1997,17(1):93~96. [33] Yagi K, Minami K. Effect of organic matter applications on methane emission from some Japanese paddy fields [J]. Soil Sci Plant Nutr, 1990, 36:599-610. [34] Wang Z P, Lindau C W, Delaune R D, et al. Methane emission and trapment in flooded rice soils as affected by soil properties [J]. Biol Fertil Soils, 1993, 16:163-168. [35] Amaral J A, Knowles R. Methane metabolism in temperate swamp [J]. Appl Environ Microbiol, 1994, 60:3945-3951. [36] Bachoon D, Jones R D. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades [J]. Soil Biol Biochem, 1992, 24:21-27. [37] Nilsson M. Methane production from peat, regulated by organic chemical composition, elemental and anion concentrations, pH and depth [A]. International Peat Congress [C].IPS. Jyska, 1992, 125-133. [38] Smith L K, Lewis W W Jr. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies [J]. Global Biogeochem Cycles, 1992, 6:323-338. [39] Huang Y, Sass R, Fisher Jr. F M. Methane emission from Texas rice paddy soils 1. quantitative multi-year dependence of CH4 emission on soil, cultivars and grain yield [J]. Global change biology, 1997, (3) :491-500. [40] Sass R L, Fisher F M, Harcombe P A, et al. Methane production and emission in a Texas rice field [J]. Global Biogeochem Cycles, 1990, (4):47-68. [41] Bartlett K B, Crill P M, Sass R L, et al. Methane emissions from tundra environments in Yyukon-kuskokwim delta,Alaska [J]. J Geophys Res, 1992, 97(D15):16645-16660. [42] Prieme A, Christensen S. Seasonal and spatial variation of methane oxidation in a Danish spruce forest [J]. Soil Biol Biochem, 1997, 29:1165-1172. [43] Saarnio S, Alm J, Martikainen P J, et al. Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from a boreal mire [J]. J Ecology, 1998, 86:261-268. [44] Svensson B H. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen [J]. Appl Environ Microbiol, 1984, 48:389-394. [45] Moore T R, Knowles R. Methane emission from fen, bog and swamp peatlands in Quebec [J]. Biogeochemistry, 1990, 11:45-61. [46] Williams R J, Crawford R L. Methane production in Minnesota peatlands [J]. Appl Environ Microbiol, 1984, 47:1266-1271. [47] Lindau C W, Bollich P K, DeLaune R D, et al. Methane mitigation in flooded Louisiana rice fields [J]. Biol Fertil Soils,1993, 15:174-178. [48] Aerts R, Toft S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils [J]. Soil Biol Biochem, 1997, 29: 168-169. [49] Aerts R, Toft S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils [J]. Soil Biol Biochem, 1997, 29: 168-169. [50] Wang Z, Delaune R D, Lindau C W, et al. Methane production from anaerobic soilamended with rice straw and nitrogen fertilizers [J]. Fert Res, 1992, 33:115-121. [51] 王德宣.三江平原沼泽湿地与稻田CH4 排放对比研究[J].地理科学,2002,22(4):500~503. |