[1] Brockman F J. Post-sampling changes in microbial community composition and activity in a subsurface paleosol[J]. Micro. Ecol, 1998,(36):152-164. [2] Madigan MT, Martinko J M, Parker J. Brock-Biology of microorganisms. 9th edition[M]. London: Prentice Hall, 1999. [3] Harvey H R, Fallom R D, Patton J S. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments[J]. Geochimica et Cosmochimica Acta., 1986, (50):795-805. [4] White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate[J]. Oecologia, 1979, 40: 51-62. [5] Onstott. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia[J]. Geomicrobiology Journal, 1998,(15):353- 385. [6] Amy P S, Durham C, Hall D, et al. Starvation survival of deep subsurface isolates[J]. Curr Microbol, 1993, (26):345-352. [7] Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biol Fert Soil, 1996, (22):59-65. [8] Thomas J M. Assessment of the microbial potential for nitrate-enhanced bioremediation of a JP-4 fuel-contaminated aquifer[J]. J Ind Microbiol, 1997,(18):213-221 [9] Ludvigsen L, Albrechtsen H J, Holst H, et al. Correlating phospholipid fatty acids PLFA in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods[J]. FEMS Microbiol. Rev., 1997,(20): 447-460. [10] R黷ters Heike. Tracing viable bacteria in Wadden Sea sediments using phospholipid analysis. Carl von Ossietzky University, Oldenburg, 2001. 164. [11] King M W G, et al.. Migration and natural fate of a coal tar creosote plume 2. Mass balance and biodegradation indicators[J]. Journal of Contaminant Hydrology, 1999,(39):281-307. [12] Ringelberg D B, Sutton S, White D C. Biomass, bioactivity and biodiversity, microbial ecology of the deep subsurface: analysis of ester-linked phospholipid fatty acids[J]. FEMS Microbiol Rev, 1997, (20):371-377. [13] Piffner. Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site[J]. Appl Biochem Biotech, 1997, (63):775-788. [14] Smith G A. Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination[J]. J Microbi-ol., 1986,(32):104-111. [15] Fang J and Barcelona M J. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry[J]. J. Microbiol. Methods, 1998,(33): 23-35. [16] Ludvigsen L. Distribution and composition of microbial populations in a landfill leachate contaminated aquifer(Grindsted, Denmark)[J]. Microb Ecol., 1999,(37):197-207. [17] White D C, Findlay R H. Biochemical markers for measurement of predation effect on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms[J]. Hydrobiologia, 1988, (159):119-123. [18] Guckert J B, Hood M A, White D C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids[J]. Appl. Environ. Microbiol., 1986,(52): 794-801. [19] Law J H. Biosynthesis of cyclopropane rings[J]. Acc. Chem. Res., 1971, (4): 199-203. [20] Van Vleet E S, Quinn J G. Early diagenesis of fatty acids and isoprenoid alcohols in esturine and coastal sediments[J]. Geochim. Cosmochim. Acta, 1979,(43):289-303. [21] White D C. The groundwater aquifer microbiota: biomass, community structure, and nutritional status[J]. Dev. Industr. Microbiol., 1983,(24): 201-211. [22] Dowling N J E, Widdel F, White D C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria[J]. Journal of General Microbiology, 1986,(132):1815-1825. [23] Haack S K. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities[J]. Appl Environ Microbiol., 1994,(60):2483-2493. [24] Bossio D A. Determinants of soil microbial communities: affects of agricultural management, season, and soil type on phospholipid fatty acid profiles[J]. Microb Ecol, 1998,(36):1-12. [25] Lehman R M, Colwell F S, Ringelberg D B, et al.. Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores[J]. J. Microbiol Meth., 1995, (22):263-281. [26] Hedrick D B. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data[J]. J Microbiol. Methods, 2000,(41):235-248. [27] Lytle C A, Gan Y D, White D C. Electrospray ionization/mass spectrometry compatible reversed-phase separation of phospholipids: piperidine as a post column modifier for negative ion detection[J]. J. Microbiol Methods, 2000, (41): 227-234. [28] Fang J, Barcelona M J, Alvarez P J J. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification[J]. Organic Geochemistry, 2000, (31): 881-888. |