地理科学 ›› 2005, Vol. 25 ›› Issue (6): 762-768.doi: 10.13249/j.cnki.sgs.2005.06.762
• 综述 • 上一篇
孙志高1,2, 刘景双1, 于君宝1, 王金达1
收稿日期:
2004-08-10
修回日期:
2004-12-15
出版日期:
2005-11-20
发布日期:
2005-11-20
基金资助:
SUN Zhi-Gao1,2, LIU Jing-Shuang1, YU Jun-Bao1, WANG Jin-Da1
Received:
2004-08-10
Revised:
2004-12-15
Online:
2005-11-20
Published:
2005-11-20
摘要: 稳定性同位素技术是现代生态学研究中的一门应用技术,它几乎在生态学研究的各个领域都有着广泛的应用。其中15N技术由于具有示踪和区分氮素物质的源与去向等优越性而在生态系统氮循环研究中发挥了极为重要的作用。文章主要从湿地氮素的输入过程、转化过程以及归趋过程三方面综述了该技术在当前国内外湿地氮素生物地球化学过程研究中的应用进展,特别指出当前基于该技术的湿地氮素生物地球化学过程研究尚缺乏一定的系统性、深入性和广泛性。最后,文章就该技术在湿地氮素生物地球化学过程研究中的应用前景进行了展望研究。
中图分类号:
孙志高, 刘景双, 于君宝, 王金达. 15N示踪技术在湿地氮素生物地球化学过程研究中的应用进展[J]. 地理科学, 2005, 25(6): 762-768.
SUN Zhi-Gao, LIU Jing-Shuang, YU Jun-Bao, WANG Jin-Da. Application Advance of 15N Trace Technique in the Biogeochemical Process of Nitrogen in Wetland[J]. SCIENTIA GEOGRAPHICA SINICA, 2005, 25(6): 762-768.
[1] 白军红,邓 伟,朱颜明.湿地生物地球化学过程研究进展[J].生态学杂志,2002,21(1):53~57. [2] J.霍夫斯(西德)(著).丁悌平(译). 稳定同位素地球化学[M]. 北京:科学出版社,1976.18. [3] McKinney C R, McCrea J M, Epstein S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios[J]. Rev. Sci. Instr., 1950,21:724-730. [4] 蔡德陵,张淑芳,张 经. 稳定碳、氮同位素在生态系统研究中的应用[J]. 青岛海洋大学学报,2002,32(2):287~292. [5] Robinson D. Delta-15N as an integrator of the nitrogen cycle[J]. Trends in Ecology & Evolution, 2001, 16(3):153-162. [6] Orme-Johnson W H. Nitrogen structure: where to now? [J].Science, 1992,257:1653-1640. [7] 李顺鹏.环境生物学[M]. 北京:中国农业出版社,2002. 31~36. [8] Lilburn T G, Kim K S, Ostrom N E, et al. Nitrogen fixation by symbiotic and free-Living spirochetes[J]. Science, 2001,292:2495-2498. [9] Snoeck K, Zapata F, Domenach A M, et al. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees[J]. Biotechno. Agron. Soc. Environ,2000,4(2):95-100. [10] Karl D, Leteller R, Tupas L, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997,388:533-538. [11] Gibson A H, Roper M M, Halsall D W. Nitrogen fixation not associated with legumes . In: Wilson J R (ed). Advances in Nitrogen Cycling in Agricultural Ecosystems. C.A.B. International, Wallingford, U K, 1988. 66-88. [12] Chalk, P M. Estimation of N2 fixation by isotope dilution: An appraisal of techniques involving 15N enrichment and their application[J]. Soil.Biol.Biochem, 1985,17:389-410. [13] Shearer G, Kohl D H. N2-fixation in field settings: estimations based on natural 15N abundance[J]. Aust. J. Plant Physiol., 1986,13: 699-756. [14] Yoneyama T, Muraoka T, Murakami T, et al. Natural abundance of 15N in tropical plants with emphasis on tree legumes[J]. Plant Soil, 1993,153(2):296-304. [15] Kohls S J, Kessel C Van, Baker D D,et al. Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabasca Glacier[J]. Soil Boil.and Biochem.,1994,26(5):623-632. [16] Jack J Middelburg, Joop Nieuwenhuize. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary[J]. Marine Chemistry, 1998, (60):217-225. [17] McKinney R A, Charpentier M A, Wigand C, et al. Ribbed mussel nitrogen isotope signature reflect nitrogen sources in coast-al salt marshes[J]. Ecological Applications, 2001,11(1): 203-214. [18] Graham M C, Eaves M A, Farmer J G, et al. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary, Scotland[J]. Estrarine, Coastal and Shelf Science, 2001, (52): 375-380. [19] 吴 莹,张 经,张再峰,等. 长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼, 2002,33(5):546~551. [20] Nordbakken J F, Ohlson M, Hogberg P. Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen[J]. Enveronmental Pollution, 2003, (126):191-200. [21] Ruth H Carmichael, Brendan Annett, Ivan Valiela. Nitrogen loading to Pleasant Bay, Cape Cod: application of models and stable isotopes to detect incipient nutrient enrichment of estraries[J]. Marine Pollution Bulletin, 2004,(48):137-143. [22] Davidson E A, Hart S C, Shanks C A, et al. Measuring gross nitrogen mineralization, immobilization and nitrification by 15N isotopic pool dilution in intact soil cores[J]. Journal of Soil Science, 1991,42:335-349. [23] Kirkham D, Bartholomew W V. Equations for following nutrient transformation in soil, utilizing tracer data[J]. Soil Science Society of America Proceedings, 1954,18:33-34. [24] Eriksson P G, Svensson J M, Carrer G M. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy[J]. Estuarine, Coastal and Shelf Science, 2003,(58): 861-871. [25] Lund L J, Horne A J, Williams A E. Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios[J]. Ecological Engineering, 2000,(14):67-76. [26] Karsten Kalbitz, Stefan Geyer. Different effect of peat degradation on dissolved organic carbon and nitrogen[J]. Organic Geochemistry, 2000,(33):319-326. [27] Delaune R D, Sulaeman E. Nitrification and denitrification estimates in a Louisiana swamp forest soil as assessed by -15N isotope dilution and direct gaseous measurements[J]. Water, Air and Soil Pollution, 1998,106(1-2) :149-161. [28] Hobson K A, Welch H E. Determination of trophic relationships within a high arctic marine food web using delta-13C and delta-15N analysis[J]. Mar Ecol Prog Ser, 1992,84:9-18. [29] Hugh A L Henry, Robert L Jefferies. Plant amio acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh[J]. Journal of Ecology, 2003,91(4):627-636. [30] Margaret R Quinn, Xiahong Feng, Carol L Folt, et al. Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes[J]. The Science of the Total Environment, 2003,(317):73-89. [31] Matheson F E, Nguyen M L, Cooper A B, et al. Fate of -nitrate in unplanted, planted and harvested riparian wetland soil microcosms[J]. Ecological Engineering, 2002,(19):249-264. [32] Ulrike Rückauf, Jürgen Augustin, Rolf Russow, et al. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake[J]. Soil Biology & Biochemistry, 2004,(36):77-90. [33] 李玉中,Redmann R E,祝廷成,等.羊草草原豆科牧草生物固定量研究[J]. 草地学报,2002,10(3):164~166. [34] 周瑞庆, 陈开铁,李合松,等. 应用 15N示踪技术研究水稻对氮素的吸收利用[J]. 湖南农学院学报,1991,4(1):665~669. [35] 单玉华, 王余龙, 黄建晔,等. 中后期追施15N对水稻氮素积累与分配的影响[J]. 江苏农业科学, 2000,21(4):18~21. [36] Xu Xing-Liang, Ouyang Hua, PEI Zhi-Yong, et al. Fate of 15N labled nitrate and ammonium salts added to an alpine meadow in the Qing-hai Xi-Zang plateau, China[J]. Acta Botanica Sinica, 2003,45(3):276-281. |
[1] | 王进欣, 张威, 郭楠, 李超, 王今殊. 影响海岸带盐沼土壤有机质、TN和TP含量时空变化的关键因子:潮水和植被[J]. 地理科学, 2016, 36(2): 247-255. |
[2] | 王进欣, 黄巧华, 李超, 张威, 郭楠, 王今殊. 苏北海岸带盐沼生态系统对二氯苯的自然吸收通量特征[J]. 地理科学, 2015, 35(4): 491-497. |
[3] | 于君宝, 阚兴艳, 王雪宏, 韩广轩, 管博, 谢文军, 林乾新. 黄河三角洲石油污染对湿地芦苇和碱蓬幼苗生长影响的模拟研究[J]. 地理科学, 2012, 32(10): 1254-1261. |
[4] | 王永丽, 于君宝, 董洪芳, 栗云召, 周迪, 付玉芹, 韩广轩, 毛培利. 黄河三角洲滨海湿地的景观格局空间演变分析[J]. 地理科学, 2012, 32(6): 717-724. |
[5] | 王进欣, 王今殊, 钦佩, 张维康, 王栋, 蒯梅娟. 海岸带盐沼挥发性氯代烷烃单体成分通量的相互关系[J]. 地理科学, 2012, 32(2): 213-215. |
[6] | 谢文霞, 赵全升, 张芳, 马晓菲. 胶州湾河口湿地秋冬季N2O气体排放通量特征[J]. 地理科学, 2011, 31(4): 464-469. |
[7] | 魏秀国, 李宁利, 沈承德, 郭治兴. 西江水体有机碳含量变化及悬浮物碳同位素的意义[J]. 地理科学, 2011, 31(2): 166-171. |
[8] | 张春霞, 张茂恒, 李偏, 孔兴功, 朱正坤, 姜修洋, 汪永进. 2592~1225aB.P.湖北神农架石笋氧同位素记录及区域气候意义[J]. 地理科学, 2010, 30(6): 950-954. |
[9] | 张振克, 孟红明, 谢丽, 王秀玲, 张云峰, 余克服. 海南岛东寨港红树林区岩芯地球化学特征及其古地震指示[J]. 地理科学, 2010, 30(5): 777-782. |
[10] | 杨红瑾, 黄春长, 庞奖励, 李瑜琴, 米小建, 赵明. 宁夏长城塬全新世黄土-土壤剖面元素地球化学特征研究[J]. 地理科学, 2010, 30(1): 134-140. |
[11] | 张明军, 周平, 李忠勤, 赵淑惠, 金爽. 天山乌鲁木齐河源1号冰川大气气溶胶和新雪中可溶性离子关系研究[J]. 地理科学, 2010, 30(1): 141-148. |
[12] | 董志文, 李忠勤, 张明军, 王文彬, 王飞腾. 天山奎屯河哈希勒根51号冰川雪坑化学特征及环境意义[J]. 地理科学, 2010, 30(1): 149-156. |
[13] | 李玉梅, 刘东生, 洪冰, 储国强, 洪业汤, 朱咏煊, 彭建华, 董丽敏, 韩家懋. 雅鲁藏布大峡谷羚牛牙齿珐琅质碳、氧同位素组成及其环境意义[J]. 地理科学, 2009, 29(6): 917-922. |
[14] | 李宗省, 何元庆, 庞洪喜, 张宁宁, 贾文雄, 和献中. 中国典型季风海洋性冰川区雪坑环境记录分析[J]. 地理科学, 2009, 29(5): 703-708. |
[15] | 王进欣, 孙书存, 王今殊, 仲崇庆, 邢伟. 苏北盐沼DMS、CS2和CH4排放通量沿高程梯度的变化[J]. 地理科学, 2009, 29(4): 535-539. |
|