[1] Charles A C, Robert P B, Denice H W. Assessing the relationship between biomass and soil organic matter in created wetlands of central Pennsylvania, USA [J]. Ecological Engineering, 2001, 38: 423-428. [2] Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming [J]. Ecological Applications, 1991, 1(1): 182~195. [3] Maltby E, Immirzi P. Carbon dynamics in peatlands and other wetland soils: regional and global perspectives [J]. Chemosphere, 1993, 27: 999-1023. [4] Roulet N T. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada [J].Wetlands, 2000, 20(4): 605~615. [5] 殷康前,倪晋仁.湿地研究综述[J] .生态学报,1998, 18(5): 539~546. [6] 刘兴土, 马学慧. 三江平原大面积开荒对自然环境影响及区域生态环境保护[J]. 地理科学, 2000, 20 (1) : 14~19. [7] 刘景双, 杨继松, 于君宝. 三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J]. 水土保持学报, 2003, 17(3): 5~8. [8] 杨继松, 刘景双, 孙丽娜. 温度、水分对湿地土壤有机碳矿化的影响[J]. 生态学杂志,2008, 27(1): 38~42. [9] 张丽华, 宋长春, 王德宣. 沼泽湿地CO2、CH4、N2O 排放对氮输入的响应[J]. 环境科学学报,2005, 25(8): 1112~1118. [10] 廖建雄, 王根轩. CO2和温度升高及干旱对小麦叶片化学成分的影响[J]. 植物生态学报. 2000, 24(6): 744~747. [11] 李酉开. 土壤农业化学常规分析方法[M]. 北京: 科学出版社. 1983 [12] Weintraub M N, Schimel J P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic Tundra soils [J]. Ecosystems, 2003, 6(2): 129- 143. [13] Yakovchenko V P, Sikora L J , Millner PD. Carbon and nitrogen mineralization of added particulate and macroorganic matter [J]. Soil Biology and Biochemistry, 1998, 30(14): 2139 -2146. [14] 王志明, 朱培立, 黄东迈. 14C 标记秸秆碳素在淹水土壤中的转化与平衡[J]. 江苏农业学报. 1998, 14(2):112~117. [15] 黄文昭, 赵秀兰, 朱建国 .土壤碳库激发效应研究[J]. 土壤通报. 2007, 38(1):149~154. [16] LHN IS F. Nitrogen availability of green manures [J]. Soil Science, 1926, 22: 253~2901 [17] Bingemann C W, Varner J E, Martin W P. The effect of the addition of organic materials on the decomposition of an organic soil [J]. Soil Science Society of American Proceedings, 1953, 17: 34~38. [18] 陈春梅, 谢祖彬, 朱建国. 土壤有机碳激发效应研究进展[J]. 土壤, 2006, 38(4): 359~36. [19] 朱培立, 王志明, 黄东迈等. 无机氮对土壤中有机碳矿化影响的探讨[J]. 土壤学报, 2001, 38 (4):457~463. [20] 张 雷,严 红,魏 湜. 土壤有机碳储量及影响其分解因素[J]. 东北农业大学学报. 2004, 35(6):744~748. [21] Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respication in temperate forest soils at the harvard forest[J]. Forest Ecology and Management, 2004, 196: 43-56.. [22] Vasconcellos C A. Temperature and glucose effects on soil organic carbon: CO2 evolved and decomposition rate [J]. Pesquisa Agropecaria Brasiliera, 1994, 29: 1129-1136. [23] Dalenberg J W, Jager G. Priming effect of soil organic additions to 14C-labelled soil [J]. Soil Biology and Biochemistry, 1989, 21: 443-448. [24] Hamer U, Marschner B. Priming effects in soils after combined and repeated substrate additions [J]. Geoderma, 2004, 128: 38-51. [25] Ingrid K. T, Bjorn M. P, Sander B, et al. Christensen. Estimating soil C loss potentials from the C to N ratio [J]. Soil Biology & Biochemistry, 2008, 40: 849-852. [26] Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon [J]. Nature, 2002, 419: 915-917. [27] 金 峰, 杨 浩, 赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤, 2000, 32(1): 11~17. |