地理科学 ›› 2011, Vol. 31 ›› Issue (10): 1208-1212.doi: 10.13249/j.cnki.sgs.2011.010.1208
张郴, 张捷
收稿日期:
2010-10-09
修回日期:
2011-04-27
出版日期:
1997-10-20
发布日期:
1997-10-20
通讯作者:
张 捷,教授。E-mail: jiezhang@nju.edu.cn
E-mail:jiezhang@nju.edu.cn
基金资助:
ZHANG Chen, ZHANG Jie
Received:
2010-10-09
Revised:
2011-04-27
Online:
1997-10-20
Published:
1997-10-20
摘要: 对入境旅游需求进行科学合理的预测直接关系到中国入境旅游发展战略的制定和实施,具有积极的现实意义。目前,BP神经网络作为一种常见的传统机器学习方法,被广泛用于旅游需求预测建模。然而,由于BP神经网络存在诸如易过配、参数设置难、获得全局最优解难等局限,在实际应用中表现极不稳定。有鉴于此,拟将BP神经网络和集成学习技术相结合,构建入境旅游需求预测的神经网络集成模型,并对美国、英国、澳大利亚3个客源国近20 a来的入境游客量数据进行验证分析。结果表明,神经网络集成有效克服了单个BP神经网络在小规模数据集上的局限性,获得了比包括BP神经网络在内的传统机器学习技术和传统统计方法更为准确的预测结果,这有利于更加准确地把握中国入境旅游市场需求。
中图分类号:
张郴, 张捷. 中国入境旅游需求预测的神经网络集成模型研究[J]. 地理科学, 2011, 31(10): 1208-1212.
ZHANG Chen, ZHANG Jie. Neural Network Ensemble for Chinese Inbound Tourism Demand Prediction[J]. SCIENTIA GEOGRAPHICA SINICA, 2011, 31(10): 1208-1212.
[1] Tihomir S. A Comparison of Two Econometric Models (OLS And SUR) for Forecasting Croatian Tourism Arrivals [M]. Zagreb: Croatian National Bank, 2002:112-145. [2] Carey G, Law R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention [J]. Tourism Management, 2002, 23(3): 499-510. [3] Carey G, Law R. Incorporating the rough sets theory into travel demand analysis [J]. Tourism Management, 2003, 24(5): 511-517. [4] Ao S I. Using fuzzy rules for prediction in tourist industry with uncertainty [J]. Computer Society, 2003: 213-218. [5] Hernandez-Lopez, M. Future tourists' characteristics and decisions: The use of genetic algorithms as a forecasting method [J]. Tourism Economics, 2004, 10(3): 245-262. [6] Law R. Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting [J]. Tourism Management, 2000, 21(4): 331-340. [7] Mitchell T. Mahcine Leanring [M]. New York: McGraw-Hill, 1997:45-63. [8] Mjolsness E, DeCoste D. Machine learning for science: State of the art and future prospects [J]. Science, 2001, 293(5537): 2051-2055. [9] Jiang Y, Li M, Zhou Z-H. Generation of comprehensible hypothesis from gene expression data [M]// Li J, et al. Lecture Notes in Bioinformatics 3916. Berlin: Springer, 2006: 116-123. [10] Li M, Zhou Z-H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples [J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2007, 37(6): 1088-1098. [11] Law R. A neural network model to forecast Japanese demand for travel to Hong Kong [J]. Tourism Management, 1999, 20: 89-97. [12] 雷可为, 陈 瑛. 基于BP神经网络和ARIMA组合模型的中国入境游客量预测[J]. 旅游学刊, 2007, 4(22): 20~25. [13] Dietterich T G. Machine learning research: Four current diretions [J]. AI Magazine, 1997, 18(4): 97-136. [14] Sollich P, Krogh A. Learning with ensembles: How over-fitting can be useful [M]//Touretzky D S, Mozer M C, Hasselmo M E. Advances in Neural Information Processing Systems 8. Cambridge, MA: The MIT Press, 1996: 190-196. [15] Hansen L K, Salamon P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001. [16] Freund Y, Schapire R E. Experiments with a new boosting algorithm [M]//Proceedings of the 13th International Conference on Machine Learning, 1996: 148-156. [17] Breiman L. Bias, variance, and arcing classifiers [M]//Technical Report 460. Berkeley CA: Statistics Department, University of California, 1996. [18] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting (with discussions) [J]. The Annals of Statistics, 2000, 28(2):337-407. [19] Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2):123-140. [20] Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J]. Machine Learning, 1999, 36(1-2):105-139. [21] Breiman L. Random forest [J]. Machine Learning, 2001, 45(1):5-32. [22] Efron B, Tibshirani R. An Introduction to the Boostrap [M].New York: Chapman & Hall, 1993:78-90. [23] 中华人民共和国国家旅游局. 中国旅游统计年鉴 (1991~2009) [M].北京:中国旅游出版社. [24] 中国国家统计局. 中国统计年鉴 (1991~2009)[M/OL]. http://www.stats.gov.cn/tjsj/ndsj/. [25] 中国国家统计局. 国际统计年鉴 (1991~2009)[M/OL]. http://www.stats.gov.cn/tjsj/qtsj/gjsj/. [26] Qu H-L, Lam S. A travel demand model for Mainland Chinese tourists to Hong Kong [J]. Tourism Management, 1997, 18(8):593-597. [27] 张玉娟, 赵定涛.中国入境旅游需求影响因素分析[J]. 经济理论与经济管理, 2008, (5):51~55. [28] Zinkevich M. Online convex programming and generalized infinitesimal gradient ascent [M]//Proceedings of 20th International Conference on Machine Learning, 2003: 928-936. [29] Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations [M]. San Francisco: Morgan Kaufmann, 2000:332-340. |
[1] | 程豪, 杨钊. 从大众旅游到乡村旅居:乡村区域旅游发展的新趋势——基于元方法的驱动力分析与旅居地假设[J]. 地理科学, 2021, 41(1): 83-91. |
[2] | 田里, 刘亮. 旅游孤岛效应演化机理研究——以云南普者黑旅游区为例[J]. 地理科学, 2021, 41(1): 22-32. |
[3] | 张子昂, 保继刚. 多重距离对中国入境与出境旅游流的影响:基于组态的视角[J]. 地理科学, 2021, 41(1): 13-21. |
[4] | 徐少癸, 左逸帆, 章牧. 基于模糊物元模型的中国旅游生态安全评价及障碍因子诊断研究[J]. 地理科学, 2021, 41(1): 33-43. |
[5] | 麻学锋, 刘玉林, 谭佳欣. 旅游驱动的乡村振兴实践及发展路径[J]. 地理科学, 2020, 40(12): 2019-2026. |
[6] | 刘长生, 董瑞甜, 简玉峰. 旅游业发展产业协同与荷兰病效应研究——基于胡焕庸线的思考[J]. 地理科学, 2020, 40(12): 2073-2084. |
[7] | 赵书虹, 白梦. 云南省品牌旅游资源竞争力与旅游流耦合协调特征及其影响因素分析[J]. 地理科学, 2020, 40(11): 1878-1888. |
[8] | 于洪雁, 王群勇, 张博, 刘继生. 中国旅游供需耦合协调发展的空间分异及驱动机制研究[J]. 地理科学, 2020, 40(11): 1889-1898. |
[9] | 孙晓东, 徐美华. 邮轮属性评价与品牌定位[J]. 地理科学, 2020, 40(10): 1688-1697. |
[10] | 生延超, 刘晴. 人力资本促进区域旅游经济效率的空间差异研究[J]. 地理科学, 2020, 40(10): 1710-1719. |
[11] | 刘沛林. 从新宅居生活看网络虚拟旅游的前景和方向[J]. 地理科学, 2020, 40(9): 1403-1411. |
[12] | 熊建新, 王文辉, 贺赛花, 尹妍, 唐朝凤. 洞庭湖区旅游城镇化系统耦合协调性时空格局及影响因素[J]. 地理科学, 2020, 40(9): 1532-1542. |
[13] | 朱麟奇, 李秋雨, 刘继生. 中国旅游业与地区发展及民生改善协调关系研究[J]. 地理科学, 2020, 40(8): 1328-1335. |
[14] | 张飞, 杨林生, 何勋, 石勇. 大运河遗产河道游憩利用适宜性评价[J]. 地理科学, 2020, 40(7): 1114-1123. |
[15] | 王新越, 芦雪静. 中国旅游产业集聚空间格局演变及其对旅游经济的影响[J]. 地理科学, 2020, 40(7): 1160-1170. |
|