Please wait a minute...
 首页  期刊介绍 期刊订阅 广告合作 联系我们 English
旧版网站  
 
优先出版  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行  |  下载排行  |  引用排行
地理科学    2016, Vol. 36 Issue (2): 247-255     DOI: 10.13249/j.cnki.sgs.2016.02.011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
影响海岸带盐沼土壤有机质、TN和TP含量时空变化的关键因子:潮水和植被
王进欣(),张威,郭楠,李超,王今殊()
江苏师范大学城市与环境学院,江苏 徐州 221116
The Key Factor of Impact on Temporal and Spatial Variation of Soil Organic Matter, TN and TP in Coastal Salt Marsh: Tide and Vegetation
Jinxin Wang(),Wei Zhang,Nan Guo,Chao Li,Jinshu Wang()
College of Urban and Environment, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, China
全文: PDF (580 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

为了更好地理解在潮水和植被交互作用梯度上有机质、全氮和全磷分布的特殊性,分别于生长季和非生长季在苏北盐沼沿近潮沟带和远潮沟带2条样线布设9个固定采样区,采集土壤样品,测定土壤有机质、全氮和全磷的含量。结果表明:植被和潮水的交互作用是决定土壤有机质、全氮和全磷时空变化的关键因素。相对于潮水,植被的影响更为稳定和持久;盐沼土壤有机质和全氮含量具有显著的空间和月份变化,空间变化主要包括植被带(潮水)梯度上和样带间(潮流)的差异,在植被带(潮水)梯度上植被带高于光滩,而植被带间呈现由海向陆的递减趋势,即互花米草(Spartina alterniflora)>盐地碱蓬(Suaeda salsa)>獐茅(Aeluropus littoralis)>芦苇( Phragmites australis);有机质样带间差异表现为在低位盐沼远潮沟带大于近潮沟带,而中位盐沼却是近潮沟带大于远潮沟带,全磷含量时间和空间变化上均不具显著性;pH、土壤含水量和盐分含量等与潮水作用直接相关的因子与距海距离呈负相关关系,土壤有机质、全氮和全磷与距海距离也表现为负相关关系,而土壤有机质、全氮和全磷含量与pH、土壤含水量及盐分含量等因子为正相关关系,一定程度上诠释了潮水对土壤有机质、全氮和全磷含量变化的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王进欣
张威
郭楠
李超
王今殊
关键词 有机质全氮全磷时空分布植被分布潮水 
Abstract

Coastal salt marshes are important terrestrial ecosystems, soil is one of the main accumulation pools of the organic carbon, nitrogen and phosphorus, which plays an important role in the global carbon, nitrogen and phosphorus cycles. In order to better define particularity of SOM, TN, and TP distribution along the spatial gradient about interactions between the tide and of vegetation, the contents of SOM, TN, and TP were seasonally measured along two elevational gradients of a coastal salt marsh of eastern China. Main results are as follows, the tide and vegetation interaction is factor of impact on temporal and spatial variation of SOM, TN, and TP in coastal salt marsh, with respect to the effects of tidal influence vegetation is more stable and persistent; Spatial and month variation of SOM and TN content of salt marsh are significant, spatial variation includes change along gradient of vegetation (tide) and differences between the (tidal currents) of transects, the content of vegetation zone is higher than that of tidal flat along gradient of vegetation (tide), the content of SOM, TN, and TP show decreasing from sea to land on vegetation zones, that is Spartina alterniflora>Suaeda salsa>Aeluropus littoralis>Phragmites australis; Difference between two transects of SOM shows that content of SOM, TN, and TP far tidal creeks greater than that of near tidal creek at low salt marsh, and content of SOM, TN, and TP near tidal creek greater than that of far tidal creeks at median salt marsh, spatial and temporal variation of TP is not significant; pH, soil moisture, salt content and other directly related to the tidal effect factor are negative correlation to distance away from the sea, contents of SOM, TN, and TP are also negative correlation to distance away from the sea, and the contents of SOM, TN, and TP are positively correlated to pH, soil moisture and salt content and other factors, to a certain extent, it explained that tidal influence on contents and variation of SOM, TN, and TP.

Key wordsSOM    TN    TP    temporal and spatial distribution    vegetation distribution    tide
收稿日期: 2015-04-16      出版日期: 2016-06-06
基金资助:国家自然科学基金面上项目(41271122)和国家自然科学基金青年项目(31100361)资助
作者简介: 王进欣(1971-),男,副教授,博士,研究方向为湿地生态学.E-mail:yujianw7125@163.com
引用本文:   
王进欣, 张威, 郭楠等 . 影响海岸带盐沼土壤有机质、TN和TP含量时空变化的关键因子:潮水和植被[J]. 地理科学, 2016, 36(2): 247-255.
Jinxin Wang, Wei Zhang, Nan Guo et al . The Key Factor of Impact on Temporal and Spatial Variation of Soil Organic Matter, TN and TP in Coastal Salt Marsh: Tide and Vegetation[J]. SCIENTIA GEOGRAPHICA SINICA, 2016, 36(2): 247-255.
链接本文:  
http://geoscien.neigae.ac.cn/CN/10.13249/j.cnki.sgs.2016.02.011      或      http://geoscien.neigae.ac.cn/CN/Y2016/V36/I2/247
Fig. 1  苏北海岸带盐沼湿地生态类型分布及样带设置(注:A:光滩,B-B1:互花米草盐沼,C-C1:盐地碱蓬盐沼,D-D1:獐茅(Aeluropus littoralis)盐沼,E-E1:芦苇盐沼

A-B1-C1-D1-E1:近潮沟带,A-B-C-D-E:远潮沟带。)

Fig.2  盐沼生态系统远潮沟带土壤有机质含量年际变化(注:*p<0.05,ns p>0.5,n=30。)
Fig.3  盐沼生态系统远潮沟带土壤有机质、全氮和全磷含量季节变化(注:*p<0.05,**p<0.01,ns p>0.5。)
Fig.4  盐沼生态系统土壤营养物质含量生长季空间变化(注:***p<0.001,ns p>0.5,n=12。)
Fig.5  盐沼生态系统远潮沟带土壤全氮含量年际变化(注:*p<0.05,**p<0.01,***p<0.001。)
Fig.6  盐沼生态系统远潮沟带土壤全磷含量年际变化(注:*p<0.05,**p<0.01,***p<0.001。)
差异源 SS df MS F P-value F crit
有机质 样带间(潮流梯度) 48.012 1 48.012 25.347 0.000 4.414
植被(潮水)梯度 123.985 2 61.992 32.728 0.000 3.554
交互 207.839 2 103.920 54.862 0.000 3.554
内部 34.096 18 1.894
总计 413.931 23
TN 样带间(潮流梯度) 0.195 1 0.195 21.981 0.000 4.414
植被(潮水)梯度 0.698 2 0.349 39.416 0.000 3.555
交互 0.143 2 0.071 8.076 0.003 3.555
内部 0.159 18 0.009
总计 1.194 23
TP 样带间(潮流梯度) 0.001 1 0.001 1.388 0.254 4.414
植被(潮水)梯度 0.068 2 0.0339 48.412 0.000 3.555
交互 0.004 2 0.002 2.848 0.084 3.555
内部 0.013 18 0.001
总计 0.085 23
可溶性盐总量 样带间(潮流梯度) 0.036 1 0.036 0.335 0.570 4.414
植被(潮水)梯度 0.410 2 0.205 1.932 0.174 3.555
交互 0.641 2 0.320 3.017 0.074 3.555
内部 1.912 18 0.106
总计 2.999 23
Table 1  植被和潮水双因子可重复方差分析结果
pH(n=162) 含水量(n=132) TP TN 盐分总量 有机质
n=570
pH 1
含水量 0.429** 1
TP 0.0189 0.070 1
TN 0.2019* 0.807** -0.018 1
盐分总量 0.588** 0.820** 0.040 0.619** 1
有机质 0.363** 0.691** 0.030 0.845** 0.649** 1
Table 2  海岸带盐沼土壤pH值、含水量、TP、TN、盐分总量和有机质的相关系数矩阵
理化因子 a b R2
pH (n=161) -3.1×10-5 8.47 0.067
含水量(n=61) -1.5×10-5 39.87 0.213
TP(n=621) -1.9×10-5 0.80 0.070
TN(n=621) -1.5×10-5 0.46 0.095
有机质(n=570) -3.9×10-5 8.31 0.156
可溶性盐总量(n=621) -5.3×10-5 10.37 0.192
Table 3  海岸带盐沼土壤pH值、含水量、TP、TN、盐分总量及有机质与距海距离的关系
[1] 白军红,邓伟,朱颜明,. 湿地土壤有机质和全氮含量分布特征对比研究—以向海与科尔沁自然保护区为例[J].地理科学,2002,22(2):232-237./s?wd=paperuri%3A%28bfa5e4ed47443c48d2fe012493345d2c%29&filter=sc_long_sign&sc_ks_para=q%3D%E6%B9%BF%E5%9C%B0%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E8%B4%A8%E5%92%8C%E5%85%A8%E6%B0%AE%E5%90%AB%E9%87%8F%E5%88%86%E5%B8%83%E7%89%B9%E5%BE%81%E5%AF%B9%E6%AF%94%E7%A0%94%E7%A9%B6%E2%80%94%E2%80%94%E4%BB%A5%E5%90%91%E6%B5%B7%E4%B8%8E%E7%A7%91%E5%B0%94%E6%B2%81%E8%87%AA%E7%84%B6%E4%BF%9D%E6%8A%A4%E5%8C%BA%E4%B8%BA%E4%BE%8B&sc_us=271022555204073345&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
[Bai Junhong, Deng Wei, Zhu Yanming, et al.Comparactive study on the distribution characteristics of soil organic matter and total nitrogen in wetlands.—A case study of Xianghai and Horqin nature reserve.Scientia Geographica Sinica, 2002, 22(2): 232-237.]
[2] 白军红,邓伟,张玉霞.内蒙古乌兰泡湿地环带状植被区土壤有机质及全氮空间分异规律[J]. 湖泊科学, 2002, 14(2): 145-152.
[Bai Junhong, Deng Wei, Zhu Yanming.Spatial distribution of soil organic matter and nitrogen in soil of circular-zonary vegetation areas in Wulanpao wetland, Inner Mongolia. Journal of Lake Sciences, 2002, 14(2):145-152.]
[3] 沈永明,曾华,王辉,.江苏典型淤长岸段潮滩盐生植被及其土壤肥力特征[J].生态学报, 2005,25(1): 1-6.http://d.wanfangdata.com.cn/Periodical/stxb200501001 [Shen Yongming, Zeng Hua, Wang Hui,et al.Characteristics of halophyte and associated soil along aggradational muddy coasts in Jiangsu Province.Acta Ecologica Sinica, 2005, 25(1): 1-6.]
[4] 陈庆强,周菊珍,孟翊,.长江口盐沼土壤有机质更新特征的滩面趋势[J].地理学报,2007,62(1): 72-80.
[Chen Qingqiang, Zhou Juzhen, Meng Yi, et al.Trends of soil organic matter turnover in the salt marsh of the Yangtze river estuary. Acta Geographica Sinica, 2007, 62(1): 72-80.]
[5] 陈庆强,杨艳,周菊珍,.长江口盐沼土壤有机质分布与矿化的空间差异[J].沉积学报,2012, 30(1):128-136.
[Chen Qingqiang, Yang Yan, Zhou Juzhen, et al.Spatial differentiation of soil organic matter distribution and mineralization in the salt marsh of the Yangtze estuary. Acta Sedimentologica Sinica, 2012,30(1): 128-136.]
[6] 牟晓杰,孙志高,刘兴土.黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征[J].地理科学,2012, 32(12): 1521-1529.
[Mou Xiaojie, Sun Zhigao, Liu Xingtu.Spatial distribution patterns of carbon and nitrogen in the tidal marsh soil of the Yellow river estuary. Scientia Geographica Sinica, 2012,32(12):1521-1529.]
[7] 王刚,杨文斌,王国祥,.互花米草海向入侵对土壤有机碳组分、来源和分布的影响[J].生态学报, 2013, 33(8):2474-2483. [ Wang Gang, Yang Wenbin, Wang Guoxiang, et al.The effects of Spartina alterniflora seaward invasion on soil organic carbon fractions, sources and distribution. Acta Ecologica Sinica, 2013, 33(8):2474-2483.]
[8] de Boer W F,Rydberg L, Saide V.Tides,tidal currents and their effects on the intertidal ecosystem of the southern bay,Inhaca Island,Mozambique[J].Hydrobiologia,2000,428(1):187-196./s?wd=paperuri%3A%281583ec19bc319d73a8942208a06e5f24%29&filter=sc_long_sign&sc_ks_para=q%3DTides%2C%20tidal%20currents%20and%20their%20effects%20on%20the%20intertidal%20ecosystem%20of%20the%20southern%20bay%2C%20Inhaca%20Island%2C%20Mozambique&sc_us=1626110576308615576&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
[9] Tew K S,Meng P J,Lee H J,et al.Dynamics of phytoplankton and picoplankton over a tidal cycle in a subtropical lagoon[J].Chinese Science Bulletin,2010,55(23):2522-2528.http://www.cnki.com.cn/Article/CJFDTotal-JXTW201023009.htm
[10] Lewis D B,Brown J A,Jimenez K L.Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes[J]. Estuarine,Coastal and Shelf Science,2014,139(1):11-19.
[11] Morrissey E M,Gillespie J L,Morina, J C,et al.Salinity affects microbial activity and soil organic matter content in tidal wetlands[J].Global Change Biology,2014,20(4):1351-1362,April.http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM24307658
DOI: 10.1111/gcb.12431      PMID: 24307658     
[12] 中国生态系统研究网络科学委员会.陆地生态系统土壤观测规范[M].北京:中国环境科学出版社,2007.
[Scientific Committee of Chinese Ecosystem Research Network. Protocols for standard biological observation and measurement in terrestrial ecosystems.Beijing:China Environmental Science Press, 2007.]
[13] 姜启吴,欧志吉,左平.盐沼植被对江苏盐城湿地生态系统有机质贡献的初步研究[J].海洋通报, 2012,31(5):547-551./s?wd=paperuri%3A%285722edeaa6674322121d7c6c3e66e084%29&filter=sc_long_sign&sc_ks_para=q%3D%E7%9B%90%E6%B2%BC%E6%A4%8D%E8%A2%AB%E5%AF%B9%E6%B1%9F%E8%8B%8F%E7%9B%90%E5%9F%8E%E6%B9%BF%E5%9C%B0%E7%94%9F%E6%80%81%E7%B3%BB%E7%BB%9F%E6%9C%89%E6%9C%BA%E8%B4%A8%E8%B4%A1%E7%8C%AE%E7%9A%84%E5%88%9D%E6%AD%A5%E7%A0%94%E7%A9%B6&sc_us=14327243715045832937&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
[Jiang Qiwu, Ou Zhiji, Zuo Ping.Primary study on the organic matter contribution of salt marsh vegetation to coastal wetland ecosystem in Yancheng Jiangsu.Marine Science Bulletin, 2012,31(5): 547-551.]
[14] 曹摇磊,宋金明,李学刚,. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J].应用生态学报, 2013,24(7): 2040-2048.
[Cao Lei1, Song Jinming, Li Xuegang, et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress.Chinese Journal of Applied Ecology, 2013,24(7): 2040-2048.]
[15] 钦佩,经美德,谢民.福建罗源湾海滩互花米草盐沼中氮、磷、钾元素分布的研究[J].海洋科学, 1988, (4): 62-67.http://www.cnki.com.cn/Article/CJFDTotal-HYKX198804012.htm
[Qin Pei, Jing Meide, Xie Min.Distribution of N,P,K in salt marsh of Spartina alterniflora in tidal land Luoyuan, Fujian. Marine Sciences, 1988, (4): 62-67.]
[16] 陈华. 长江口滨岸湿地盐生植被对生源要素循环的影响[D].上海:华东师范大学,2006.
[Chen Hua.Biogeochemical effects of salt-marshes on nutrients cycling at coastal tidal flat, Yangtze estuary.Shanghai: East China Normal University, 2006.]
[17] 孙炳寅,朱长生.互花米草 (Spartina alterniflora) 草场土壤微生物生态分布及某些酶活性的研究[J].生态学报,1989,9(3): 240-244.
[Sun Bingyin, Zhu Changsheng.A study on ecological distribution of microorganisms and some biochemical characteristics in the Spartina alternifloramarsh soil. Acta Ecologica Sinica, 1989,9(3): 240-244.]
[18] 赵锐锋,张丽华,赵海莉,.黑河中游湿地土壤有机碳分布特征及其影响因素[J].地理科学,2013, 33(3):363-371.
[Zhao Ruifeng, Zhang Lihua, Zhao Haili.Distribution of soil organic carbon of wetlands in the middle reaches of the Heihe river and its influencing factors. Scientia Geographica Sinica, 2013, 33(3): 363-371.]
[19] 孙志高,牟晓杰,王玲玲,.黄河口潮滩盐沼沉积强度对碱蓬残体分解及氮动态的影响[J].湿地科学,2015,13(2):135-143.http://www.cnki.com.cn/Article/CJFDTotal-KXSD201502001.htm
[Sun Zhigao, Mou Xiaojie,Wang Lingling,et al.Effects of sedimentation intensity on decomposition and nitrogen dynamics of Suaeda salsa litters in salt marshes in tidal bank of the Yellow river estuary. Wetland Science, 2015, 13(2): 135-143.]
[20] 贾乾威,刘秀状,肖培源,. 盐城滩涂土壤剖面有机质组成及分布特征[J].湿地科学,2015,13(1):74-79./s?wd=paperuri%3A%28e7c06e2813b907a9fae152cdef8189fc%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.cnki.com.cn%2Farticle%2Fcjfdtotal-kxsd201501011.htm&ie=utf-8&sc_us=17003860393355552615
[Jia Qianwei,Liu Xiuzhuang,Xiao Peiyuan,et al.Composition and distribution characteristics of organic matter in soil profiles of Yancheng flats].Wetland Science,2015,13(1):74-79.]
[21] 刘文龙,谢文霞,赵全升,. 胶州湾芦苇潮滩土壤碳、氮和磷分布及生态化学计量学特征[J].湿地科学,2014,12(3):362-368.http://www.cnki.com.cn/Article/CJFDTotal-KXSD201403014.htm
[Liu Wenlong, Xie Wenxia, Zhao Quansheng,et al.Spatial distribution and ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in soil in Phragmites australis tidal flat of Jiaozhou bay. Wetland Science, 2014,12(3):362-368.]
[1] 潘志新,彭华. 国内外红层分布及其地貌发育的对比研究[J]. 地理科学, 2015, 35(12): 1575-1584.
[2] 祁添垚,张强,王月,肖名忠,刘剑宇,孙鹏. 1960~2005年中国蒸发皿蒸发量变化趋势及其影响因素分析[J]. 地理科学, 2015, 35(12): 1599-1606.
[3] 肖烨,商丽娜,黄志刚,张文广,薛振山,张仲胜,吕宪国. 吉林东部山地沼泽湿地土壤碳、氮、磷含量及其生态化学计量学特征[J]. 地理科学, 2014, 34(8): 994-1001.
[4] 孙燕,尹东屏,顾沛澍,金小霞. 华东地区冬季不同降水相态的时空变化特征[J]. 地理科学, 2014, 34(3): 370-376.
[5] 靳英华,许嘉巍,梁宇,宗盛伟. 火山干扰下的长白山植被分布规律[J]. 地理科学, 2013, 33(2): 203-208.
[6] 李苗,臧淑英,张策,肖海丰. 那什那泡沉积物氮磷有机质污染特征及评价[J]. 地理科学, 2013, 33(12): 1531-1536.
[7] 赵明松,张甘霖,李德成,赵玉国,王德彩. 苏中平原南部土壤有机质空间变异特征研究[J]. 地理科学, 2013, 33(1): 83-89.
[8] 张芸,杨振京,孔昭宸,阎顺. 新疆石河子草滩湖湿地沉积物地球化学特征及其古环境分析[J]. 地理科学, 2012, 32(5): 616-620.
[9] 陶寅,王胜,田红,温华洋. 安徽省大雾时空分布特征及其发生的气象条件[J]. 地理科学, 2012, 32(3): 374-379.
[10] 陈长胜,王盘兴,杨秀峰,李杭玥. 东北地区暴雪天气的统计学划分方法及其时空分布特征[J]. 地理科学, 2012, 32(10): 1275-1281.
[11] 刘刚,沈柏竹,廉毅,李尚锋,曹玲,刘平. 亚洲阻塞高压分类及其与东北冷涡活动和东北夏季低温的联系[J]. 地理科学, 2012, 32(10): 1269-1274.
[12] 严登华, 耿思敏, 罗先香, 秦天玲. 中国北方地区四季的时空演变特征[J]. 地理科学, 2011, 31(9): 1105-1110.
[13] 祝滔, 郝庆菊, 江长胜, 袁雪. 耕作方式对西南地区紫色水稻土全氮及碱解氮的影响[J]. 地理科学, 2011, 31(6): 753-757.
[14] 王传辉, 周顺武, 唐晓萍, 吴萍. 近48年青藏高原强降水量的时空分布特征[J]. 地理科学, 2011, 31(4): 470-477.
[15] 张丽萍, 王小云, 张赫斯. 沙盖黄土丘陵坡地土壤理化特性随地形变化规律研究[J]. 地理科学, 2011, 31(2): 178-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《地理科学》编辑部
地址:长春市高新北区盛北大街4888号 邮编:130102 电话:+86 431 85542324 E-mail: geoscien@neigae.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn