地理科学 ›› 2017, Vol. 37 ›› Issue (2): 259-265.doi: 10.13249/j.cnki.sgs.2017.02.012
收稿日期:
2016-01-04
修回日期:
2016-07-12
出版日期:
2017-02-25
发布日期:
2017-02-25
作者简介:
作者简介:常华进(1980-),男,湖北钟祥人,教授,博士,硕士生导师,研究方向为现代环境对人类活动响应。E-mail:
基金资助:
Huajin Chang1,2(), Guangchao Cao2, Kelong Chen2, Xiaozhou Sun1
Received:
2016-01-04
Revised:
2016-07-12
Online:
2017-02-25
Published:
2017-02-25
Supported by:
摘要:
对青海湖流域沙柳河下游沉积物中As、Cd、Pb、V、Cr、Mn、Ni、Cu和Zn 9种重金属元素的含量进行了分析测定,采用污染系数、富集系数、地累积指数和潜在生态危害指数评估了其污染程度。结果表明:无论在横向还是纵向上,重金属元素含量均低于青海湖土壤背景值;重金属元素污染系数和富集系数均小于2,且大多数样品的值低于1(高于1者多为Cd、Cu、Ni、Zn,且具高值);地累积指数均为负值(除QB-19中Cd和Cu分别为0.10和0.02);潜在生态风险因子大多低于30,潜在生态危害指数大多低于70。沙柳河下游沉积物尚未出现重金属污染,具有低的生态风险,但该流域重金属的人为排放确实存在(主要是Cd、Cu、Ni、Zn等),而且在近代排放更为显著。
中图分类号:
常华进, 曹广超, 陈克龙, 孙小舟. 青海湖流域沙柳河下游沉积物中重金属污染风险评价[J]. 地理科学, 2017, 37(2): 259-265.
Huajin Chang, Guangchao Cao, Kelong Chen, Xiaozhou Sun. Pollution and Potential Ecological Risk of Heavy Metals in Sediment from the Lower Reaches of Shaliuhe River, Qinghai Lake Watershed[J]. SCIENTIA GEOGRAPHICA SINICA, 2017, 37(2): 259-265.
表1
沙柳河下游沉积物重金属元素含量(mg/kg)"
位置 | As | Cd | Pb | V | Cr | Mn | Ni | Cu | Zn | Th | |
---|---|---|---|---|---|---|---|---|---|---|---|
QB-13 | 37°19′40.7″N,100°7′25.2″E | 10.8 | 0.12 | 20.2 | 66 | 52 | 624 | 24.6 | 18.8 | 70 | 12.9 |
QB-14 | 37°19′41.8″N,100°7′24.8″E | 8.8 | 0.07 | 15.6 | 58 | 42 | 529 | 19.8 | 13.0 | 57 | 12.4 |
QB-15 | 37°19′43.3″N,100°7′24.4″E | 10.5 | 0.11 | 18.2 | 60 | 46 | 623 | 23.1 | 19.6 | 65 | 11.4 |
QB-16 | 37°19′44.4″N,100°7′24.1″E | 10.5 | 0.11 | 19.2 | 64 | 51 | 636 | 26.5 | 22.3 | 70 | 8.3 |
QB-17 | 37°19′44.2″N,100°7′22.4″E | 9.3 | 0.10 | 17.1 | 63 | 50 | 570 | 23.6 | 16.9 | 63 | 12.4 |
QB-18 | 37°19′45.5″N,100°7′22.1″E | 9.2 | 0.07 | 15.3 | 59 | 41 | 543 | 19.8 | 13.7 | 57 | 11.2 |
QB-19 | 37°19′45.1″N,100°7′20.1″E | 13.3 | 0.22 | 24.7 | 75 | 62 | 778 | 32.1 | 29.9 | 95 | 10.2 |
QB-20 | 37°19′45.1″N,100°7′20.1″E | 12.2 | 0.17 | 21.6 | 65 | 51 | 630 | 28.4 | 25.2 | 76 | 12.3 |
QB-21 | 37°19′45.1″N,100°7′20.1″E | 11.1 | 0.11 | 17.4 | 59 | 51 | 530 | 24.5 | 18.0 | 62 | 12.2 |
QB-22 | 37°19′45.1″N,100°7′20.1″E | 11.2 | 0.11 | 17.0 | 57 | 48 | 635 | 23.3 | 17.1 | 60 | 11.3 |
QB-23 | 37°19′44.9″N,100°7′18.7″E | 11.9 | 0.16 | 22.4 | 74 | 59 | 745 | 30.6 | 28.7 | 83 | 10.5 |
QB-24 | 37°19′44.9″N,100°7′17.8″E | 8.7 | 0.06 | 15.0 | 52 | 37 | 485 | 20.2 | 12.6 | 51 | 12.0 |
QB-29 | 37°19′43.1″N,100°7′17.9″E | 9.6 | 0.09 | 15.4 | 56 | 39 | 526 | 21.4 | 13.4 | 56 | 11.0 |
QB-30 | 37°19′43.5″N,100°7′19.7″E | 12.1 | 0.17 | 23.0 | 73 | 61 | 744 | 32.0 | 27.8 | 82 | 14.2 |
最大值 | 13.3 | 0.22 | 24.7 | 75 | 62 | 778 | 32.1 | 29.9 | 95 | 14.2 | |
最小值 | 8.7 | 0.06 | 15.0 | 52 | 37 | 485 | 19.8 | 12.6 | 51 | 8.3 | |
算术平均值 | 10.4 | 0.12 | 18.7 | 63.6 | 49.1 | 618 | 24.9 | 19.7 | 68.1 | 11.6 | |
标准差 | 1.5 | 0.05 | 3.5 | 7.7 | 8.9 | 100 | 4.8 | 6.6 | 13.7 | 1.4 | |
变异系数(%) | 14.4 | 42.1 | 18.4 | 12.1 | 18.1 | 16.2 | 19.2 | 33.6 | 20.1 | 12.1 | |
青海湖土壤背景值[ | 11.7 | - | 20.5 | 73 | 54 | 626 | 25.0 | 19.7 | 64 | 11.4 | |
青海土壤平均值[ | 14.0 | 0.14 | 20.9 | 72 | 70 | 580 | 29.6 | 22.2 | 80 | 12.1 | |
毒性系数[ | 10 | 30 | 5 | 2 | 2 | 1 | 5 | 5 | 1 | - |
[1] |
Nriagu J O, Pacyna J M.Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988, 333: 134-139.
doi: 10.1038/333134a0 pmid: 3285219 |
[2] |
Qian J, Shan X, Wang Z et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J]. Science of the Total Environment, 1996, 187(2): 131-141.
doi: 10.1016/0048-9697(96)05134-0 |
[3] |
Wenzel W W, Jockwer F.Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps[J]. Environmental Pollution, 1999, 104(1): 145-155.
doi: 10.1016/S0269-7491(98)00139-0 |
[4] | 白艳芬, 马海州, 张宝成, 等. 基于遥感和GIS技术的青海湖环湖地区生态环境脆弱性评价[J]. 遥感技术与应用, 2009, 24(5): 635-641. |
[Bai Yanfen, Ma Haizhou, Zhang Baocheng et al. Eco-environmental vulnerability analysis around Qinghai Lake based on RS and GIS technology. Remote Sensing Technology and Application, 2009, 24(5): 635-641.] | |
[5] | 陈晓光, 李剑萍, 李志军, 等. 青海湖地区植被覆盖及其与气温降水变化的关系[J]. 中国沙漠, 2007, 27(5): 797-804. |
[Chen Xiaoguang, Li Jianping, Li Zhijun et al. Vegetation coverage and its relation with climate change in Qinghai Lake Area. Journal of Desert Research, 2007, 27(5): 797-804.] | |
[6] | 王平, 曹军骥, 吴枫. 青海湖流域表层土壤环境背景值及其影响因素[J]. 地球环境学报, 2010, 1(3): 189-200. |
[Wang Ping, Cao Junji, Wu Feng.Environmental background values and its impact factors of topsoilwithin the Lake Qinghai catchment, Northeast Tibetan Plateau, China. Journal of Earth Environment, 2010, 1(3): 189-200.] | |
[7] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 329-501. |
[China National Environmental Monitoring Center. The elements background value in soil of China. Beijing: China Environmental Science Press, 1990: 329-501.] | |
[8] |
Håkanson L.An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.
doi: 10.1016/0043-1354(80)90143-8 |
[9] |
徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115.
doi: 10.3969/j.issn.1003-6504.2008.02.030 |
[Xu Zhengqi, Ni Shijun, Tuo Xianguo et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science & Technology, 2008, 31(2): 112-115.]
doi: 10.3969/j.issn.1003-6504.2008.02.030 |
|
[10] | 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2012, 55(1): 91-99. |
[Chang Huajin, Chu Xuelei,Feng Lianjun et al. Redox sensitive trace elements as paleoenvironments proxies. Geological Review, 2012, 55(1): 91-99.] | |
[11] |
Wang Cong, Liu Shiliang, Zhao Qinghe et al. Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River[J]. Ecotoxicology and Environmental Safety, 2012, 82: 32-39.
doi: 10.1016/j.ecoenv.2012.05.006 pmid: 22664225 |
[12] | 谢丽, 张振克. 长江北支口门圆陀角附近潮滩沉积物重金属来源及污染评价[J]. 地理科学, 2015, 35(3): 380-386. |
[Xie Li, Zhang Zhenke.Sources and pollution assessment of heavy metals in the sediments of the tidal flat at the Yuantuojiao point,the North Branch, Changjiang River. Scientia Geographica Sinica, 2015, 35(3): 380-386.] | |
[13] |
Hanif N, Eqani S A, Ali S M et al. Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan[J]. Journal of Geochemical Exploration, 2016, 165: 62-70.
doi: 10.1016/j.gexplo.2016.02.006 |
[14] | Müller G.Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971[J]. Umschau, 1979, 79(24): 778-783. |
[15] |
于万辉, 王俊杰, 臧淑英. 松嫩平原湖泊底泥重金属空间变异特征及其风险评价[J]. 地理科学, 2012, 32(8): 1000-1005.
doi: 10.1007/s11783-011-0280-z |
[Yu Wanhui, Wang Junjie, Zang Shuying.The spatial variability characteristics and potential ecological risk assessment of heavy metals of lake sediments in the Songnen Plain. Scientia Geographica Sinica, 2012, 32(8): 1000-1005.]
doi: 10.1007/s11783-011-0280-z |
|
[16] |
Gowd S S, Reddy M R, Govil P K.Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India[J]. Journal of Hazardous Materials, 2010, 174(1/3): 113-121.
doi: 10.1016/j.jhazmat.2009.09.024 pmid: 19837511 |
[17] |
Islam M S, Ahmed M K, Raknuzzaman Met al. Heavy metal pollution in surface water and sediment:A preliminary assessment of an urban river in a developing country[J]. Ecological Indicators, 2015, 48: 282-291.
doi: 10.1016/j.ecolind.2014.08.016 |
[18] |
Zhang Zhaoyong, Li Juying, Mamat Z et al. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China[J]. Ecotoxicology and Environmental Safety, 2016, 126: 94-101.
doi: 10.1016/j.ecoenv.2015.12.025 pmid: 26735186 |
[19] | Müller G.Die schwermetallbelastung der sedimente des neckars und seiner nebenflusse:eine bestandsaufnahme[J]. Chemical Zeitung, 1981, 105(2): 157-164. |
[20] | 关莹, 臧淑英, 肖海丰. 连环湖马圈泡沉积物重金属污染及潜在生态风险[J]. 地理科学, 2014, 34(4): 505-512. |
[Guan Ying, Zang Shuying, Xiao Haifeng.Pollution and potential ecological risk of heavy metals in core sediments from Majuan Lake in Lianhuan Lake. Scientia Geographica Sinica, 2014, 34(4): 505-512.] | |
[21] |
Sun Yuebing, Zhou Qixing, Xie Xiaokui et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China[J]. Journal of Hazardous Materials, 2010, 174(1/3): 455-462.
doi: 10.1016/j.jhazmat.2009.09.074 pmid: 19825507 |
[22] |
马建华, 王晓云, 侯千, 等. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究, 2011, 30(3): 486-495.
doi: 10.11821/yj2011030009 |
[Ma Jianhua, Wang Xiaoyun,Hou Qian et al. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens. Geographical Research, 2011, 30(3): 486-495.]
doi: 10.11821/yj2011030009 |
|
[23] |
段海静, 蔡晓强, 阮心玲, 等. 开封市公园灰尘重金属含量及潜在生态风险[J]. 地球与环境, 2016, 44(1): 89-95.
doi: 10.14050/j.cnki.1672-9250.2016.01.012 |
[Duan Haijing, Cai Xiaoqiang,Ruan Xinling et al. Potential ecological risk of heavy metals in surface dusts from parks of kaifeng city, China. Earth and Environment, 2016, 44(1): 89-95.]
doi: 10.14050/j.cnki.1672-9250.2016.01.012 |
|
[24] |
Yin Xuebin, Liu Xiaodong, Sun Liguang et al. A 1500-year record of Lead, Copper, Arsenic, Cadmium, Zinc level in Antarctic seal hairs and sediments[J]. Science of the Total Environment, 2006, 371(1/3): 252-257.
doi: 10.1016/j.scitotenv.2006.07.022 pmid: 16928392 |
[25] |
Peng Jianfeng, Song Yonghui, Yuan Peng et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2/3): 633-640.
doi: 10.1016/j.jhazmat.2008.04.061 pmid: 18547718 |
[26] |
姚书春, 薛滨. 长江下游青弋江、水阳江水系湖泊沉积物中重金属变化特征研究[J]. 第四纪研究, 2010, 30(6): 1177-1185.
doi: 10.3969/j.issn.1001-7410.2010.06.15 |
[Yao Shuchun, Xue Bin.Heavy metals in lake sediments of the Qingyi and Shuiyang Drainages in the lower reaches of the Yangtze River. Quaternary Sciences, 2010, 30(6): 1177-1185.]
doi: 10.3969/j.issn.1001-7410.2010.06.15 |
|
[27] |
杨龙, 陈克龙, 曹生奎, 等. 青海湖典型湿地土壤重金属分布特征[J]. 湿地科学与管理, 2012, 8(1): 30-33.
doi: 10.3969/j.issn.1673-3290.2012.01.09 |
[Yang Long, Chen Kelong, Cao Shengkui et al. Distribution of heavy metals in typical wetland soil of Qinghai Lake. Wetland Science & Management, 2012, 8(1): 30-33.]
doi: 10.3969/j.issn.1673-3290.2012.01.09 |
|
[28] | 常华进, 曹广超, 陈克龙. 青海倒淌河末端沉积物中重金属含量及其指示意义[J]. 土壤通报, 2014, 45(3): 728-733. |
[Chang Huajin, Cao Guangchao, Chen Kelong.Concentration and implications of heavy metals in sediment in the lower reaches of Daotanghe,Qinghai Province. Chinese Jounal of Soil Science, 2014, 45(3): 728-733.] |
[1] | 黄亚楠, 潘少明, 刘志勇. 中国湖泊柱样沉积物中239+240Pu的来源与分布特征[J]. 地理科学, 2018, 38(3): 437-447. |
[2] | 张兆永, 吉力力·阿不都外力, 姜逢清, 艾尼瓦尔·买买提. 艾比湖流域农田土壤重金属的环境风险及化学形态研究[J]. 地理科学, 2015, 35(9): 1198-1206. |
[3] | 谢丽, 张振克. 长江北支口门圆陀角附近潮滩沉积物重金属来源及污染评价[J]. 地理科学, 2015, 35(3): 380-386. |
[4] | 徐利强, 徐芳, 周涛发. 巢湖沉积物粒度特征及其沉积学意义[J]. 地理科学, 2015, 35(10): 1318-1324. |
[5] | 王冀, 申红艳, 张英娟, 王振宇. 青海地区冬季气温年际变化及其成因分析[J]. 地理科学, 2015, 35(1): 99-106. |
[6] | 展秀丽, 严平, 谭遵泉. 基于GIS技术的青海湖流域综合整治类型区划分及整治方向[J]. 地理科学, 2015, 35(1): 122-128. |
[7] | 李建国, 濮励杰, 廖启林, 朱明, 刘丽丽, 张丽芳, 王琪琪, 戴小清. 无锡市土壤重金属富集的梯度效应与来源差异[J]. 地理科学, 2014, 34(4): 496-504. |
[8] | 关莹, 臧淑英, 肖海丰. 连环湖马圈泡沉积物重金属污染及潜在生态风险[J]. 地理科学, 2014, 34(4): 505-512. |
[9] | 仝致琦, 陈太政, 段海静, 谷蕾, 马建华. 不同耕作方式对路旁土壤重金属分布的影响——以黄淮平原国道310开封段为例[J]. 地理科学, 2014, 34(3): 377-384. |
[10] | 郭永强, 黄春长, 庞奖励, 尚瑞清, 周亚利. 汉江上游现代大洪水滞流沉积物的粒度分布特征研究[J]. 地理科学, 2014, 34(11): 1369-1376. |
[11] | 曹立国, 潘少明, 刘旭英, 徐仪红, 徐伟. 长江口水下三角洲239+240Pu和137Cs的分布特征及环境意义[J]. 地理科学, 2014, 34(1): 97-102. |
[12] | 陈志凡, 赵烨, 郭廷忠, 王水锋, 田青. 污灌条件下重金属在耕作土壤中的积累与形态分布特征——以北京市通州区凤港减河污灌区农用地为例[J]. 地理科学, 2013, 33(8): 1014-1021. |
[13] | 杨萍, 王乃昂, 黄银洲, 董春雨, 朵海瑞, 鄂崇毅. 青海湖小冰期降水量估算[J]. 地理科学, 2013, 33(5): 609-612. |
[14] | 周华, 廖富强, 徐明星, 周生路, 吴绍华. 连云港藤花落遗址土壤粒度及重金属累积特征[J]. 地理科学, 2013, 33(3): 349-355. |
[15] | 李苗, 臧淑英, 张策, 肖海丰. 那什那泡沉积物氮磷有机质污染特征及评价[J]. 地理科学, 2013, 33(12): 1531-1536. |
|