地理科学 ›› 2017, Vol. 37 ›› Issue (8): 1270-1276.doi: 10.13249/j.cnki.sgs.2017.08.018
徐涵秋1,2(), 张博博1,2, 关华德3, 胡秀娟1,2, 陈明华4, 付伟1,2
收稿日期:
2016-08-09
修回日期:
2017-01-10
出版日期:
2017-08-15
发布日期:
2017-08-15
作者简介:
作者简介:徐涵秋(1955-), 男, 博士,教授, 博士生导师,主要从事环境与资源遥感应用研究。E-mail:
基金资助:
Hanqiu Xu1,2(), Bobo Zhang1,2, Huade Guan3, Xiujuan Hu1,2, Minghua Chen4, Wei Fu1,2
Received:
2016-08-09
Revised:
2017-01-10
Online:
2017-08-15
Published:
2017-08-15
Supported by:
摘要:
针对林下水土流失缺乏有效判别方法的问题,提出了一种遥感判别方法。该方法以植被覆盖度、植被健康度、土壤裸露度和坡度为判别因子,采用规则法来建立林下水土流失遥感判别模型,并将其应用于福建省长汀县。结果发现,长汀县有311.66 km2的林地发生不同程度的林下水土流失,其中有13.35%的土壤侵蚀强度达到中度。通过遥感方法识别出的林下水土流失区的空间分布位置可为该县今后深入治理水土流失提供目标靶区。
中图分类号:
徐涵秋, 张博博, 关华德, 胡秀娟, 陈明华, 付伟. 南方红壤区林下水土流失的遥感判别——以福建省长汀县为例[J]. 地理科学, 2017, 37(8): 1270-1276.
Hanqiu Xu, Bobo Zhang, Huade Guan, Xiujuan Hu, Minghua Chen, Wei Fu. Detection of Soil Erosion Area Under Forest Canopy in the Red Soil Region of Southern China Using Remote Sensing Techniques: Changting County, Fujian Province[J]. SCIENTIA GEOGRAPHICA SINICA, 2017, 37(8): 1270-1276.
[1] | 廖承彬, 魏天儒. 红壤坡地不同树种林下水土流失特征研究[J]. 水土保持通报, 2013, 33(2):198-202. |
[Liao Chengbin, Wei Tianru.Characteristics of soil and water loss on red soil slope land under forest with different tree species. Bulletin of Soil and Water Conservation. 2013, 33(2):198-202.] | |
[2] | 徐义保. 南方红壤丘陵区马尾松林下水土流失过程研究[D]. 福州:福建师范大学, 2012. |
[Xu Yibao.Research on process of undergrowth loss the soil and water in red soil hilly region of Southern China. Fuzhou: Fujian Normal University, 2012.] | |
[3] |
朱颂茜, 龚洁, 林恩标, 等. 南方丘陵区林下水土流失特点及防治措施探讨[J]. 亚热带水土保持, 2013, 25(3): 24-30.
doi: 10.3969/j.issn.1002-2651.2013.03.007 |
[Zhu Songqian, Gong Jie,Lin Enbiao et al. Characteristics and control measures of soil and water loss in underground forest in southern hilly region. Subtropical Soil and Waer Conservation, 2013, 25(3): 24-30.]
doi: 10.3969/j.issn.1002-2651.2013.03.007 |
|
[4] | 何圣嘉, 谢锦升, 杨智杰, 等. 南方红壤丘陵区马尾松林下水土流失现状、成因及防治[J]. 中国水土保持科学, 2011, 9(6): 65-70. |
[He Shengjia, Xie Jinsheng,Yang Zhijie et al. Status, causes and prevention of soil and water loss in Pinus massoniana woodland in hilly red soil region of Southern China. Science of Soil and Water Conservation, 2011, 9(6): 65-70.] | |
[5] |
雷环清. 兴国县花岗岩区林下水土流失及其防治[J]. 中国水土保持, 2007, (3): 58-59.
doi: 10.3969/j.issn.1000-0941.2007.03.025 |
[Lei Huanqing.Soil and water loss of granite region under the trees in Xingguo County and its prevention and control. Soil and Water Conservation in China, 2007, (3): 58-59.]
doi: 10.3969/j.issn.1000-0941.2007.03.025 |
|
[6] |
杨冉冉, 徐涵秋, 林娜, 等. 基于RUSLE的福建省长汀县河田盆地区土壤侵蚀定量研究[J]. 生态学报, 2013, 33(10): 2974-2982.
doi: 10.5846/stxb201205130701 |
[Yang Ranran, Xu Hanqiu,Lin Na et al. RUSLE-based quantitative study on the soil erosion of the Hetian basin area in County Changting, Fujian Province, China. Acta Ecologica Sinica, 2013, 33(10): 2974-2982.]
doi: 10.5846/stxb201205130701 |
|
[7] | 徐涵秋. 南方典型红壤水土流失区地表裸土动态变化分析——以福建省长汀县为例[J]. 地理科学, 2013, 33(4):489-496. |
[Xu Hanqiu.Dynamics of bare soil in a typical reddish soil loss region of Southern China: Changting County, Fujian Province. Scientia Geographica Sinica, 2013, 33(4):489-496.] | |
[8] |
Ramsey R D,Wright D L Jr,McGinty C. Evaluating the use of Landsat 30m Enhanced Thematic Mapper to monitor vegetation cover in shrub-steppe environments[J]. Geocarto International, 2004, 19(2): 39-47.
doi: 10.1080/10106040408542305 |
[9] |
Chander G, Markham B L, Helder D L.Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 2009, 113: 893-903.
doi: 10.1016/j.rse.2009.01.007 |
[10] | USGS. Landsat 8 Data [OL]. |
29) | |
[11] |
Chavez P S Jr. Image-based atmospheric corrections-revisited and improved[J]. Photogrammetric Engineering and Remote Sensing, 1996, 62(9): 1025-1036.
doi: 10.1016/0031-0182(96)00019-3 |
[12] | Jensen J R.Remote Sensing of the Environment: An Earth Resource Perspective (2nd Edition)[M]. Upper Saddle River, NJ: Pearson Prentice-Hall Inc, 2006,608. |
[13] |
Gutman G, Ignatov A.The derivation of the green vegetation fraction from NOAA/ AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote sensing, 1998, 19(8): 1533-1543.
doi: 10.1080/014311698215333 |
[14] |
Carlson T N, Ripley D.On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62: 241-252.
doi: 10.1016/S0034-4257(97)00104-1 |
[15] |
Wu C, Murray A T.Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84: 493-505.
doi: 10.1016/S0034-4257(02)00136-0 |
[16] |
徐涵秋, 何慧, 黄绍霖. 福建省长汀县河田水土流失区植被覆盖度变化及其热环境效应. 生态学报, 2013, 33(10): 2954-2963.
doi: 10.5846/stxb201205150720 |
[Xu Hanqiu, He Hui, Huang Shaolin.Analysis of fractional vegetation cover change and its impact on thermal environment in the Hetian basinal area of County Changting, Fujian province, China. Acta Ecologica Sinica, 2013, 33(10): 2954-2963.]
doi: 10.5846/stxb201205150720 |
|
[17] |
Bausch W C, Duke H R.Remote sensing of plant nitrogen status in corn[J]. Transactions of the ASAE, 1996, 39(5): 1869-1875.
doi: 10.13031/2013.27665 |
[18] |
谭昌伟, 王纪华, 赵春江, 等. 利用Landsat TM 遥感数据监测冬小麦开花期主要长势参数[J]. 农业工程学报, 2011, 27(5): 224-230.
doi: 10.3969/j.issn.1002-6819.2011.05.040 |
[Tan Changwei, Wang Jihua,Zhao Chunjiang et al. Monitoring wheat main growth parameters at anthesis stage by Landsat TM. Transactions of the CSAE, 2011, 27(5): 224-230.]
doi: 10.3969/j.issn.1002-6819.2011.05.040 |
|
[19] | Jensen J R.Introductory digital image processing: A remote sensing perspective (4th Edition)[M]. Upper Saddle River, NJ: Pearson Prentice-Hall Inc,2015,544. |
[20] | Kearney M S, Rogers A S, Townshend J R G. Developing a model for determining coastal marsh “health”. In: Third Thematic Conference on Remote Sensing for Marine and Coastal Environments, Seattle, Washington, 1995: 527-537. |
[21] |
Mwaniki, Agutu N O, Mbaka J Get al. Landslide scar/soil erodibility mapping using Landsat TM/ETM+ bands 7 and 3 Normalised Difference Index: A scase study of central region of Kenya. Applied Geography, 2015, 64: 108-120.
doi: 10.1016/j.apgeog.2015.09.009 |
[1] | 冀琴, 董军, 刘睿, 肖作林, 杨太保. 1990-2015年喜马拉雅山冰川变化的遥感监测及动因分析[J]. 地理科学, 2020, 40(3): 486-496. |
[2] | 王万同, 孙汀, 王金霞, 付强, 安传艳. 基于多源遥感数据的区域生态系统服务价值年际动态监测——以中原城市群为例[J]. 地理科学, 2019, 39(4): 680-687. |
[3] | 姚远, 陈曦, 钱静. 定量遥感尺度转换方法研究进展[J]. 地理科学, 2019, 39(3): 367-376. |
[4] | 赵旦, 吴炳方, 曾源, 衣海燕. 2000~2015年中国人工表面变化遥感监测分析[J]. 地理科学, 2019, 39(12): 1982-1989. |
[5] | 宋开山, 杜云霞, 王宗明, 张树文, 张柏, 刘兆礼, 赵凯, 李晓峰, 毛德华, 刘宝江, 刘焕军, 张树清, 李颖. 中国科学院东北地理与农业生态研究所遥感科学与技术研究回顾与展望 ——献给东北地理与农业生态研究所成立60周年[J]. 地理科学, 2018, 38(7): 1023-1031. |
[6] | 何兴元, 任春颖, 陈琳, 王宗明, 郑海峰. 森林生态系统遥感监测技术研究进展[J]. 地理科学, 2018, 38(7): 997-1011. |
[7] | 李飞, 曹可, 赵建华, 宋德瑞. 典型海岸线指标识别与特征研究——以江苏中部海岸为例[J]. 地理科学, 2018, 38(6): 963-971. |
[8] | 黄麟, 祝萍, 肖桐, 曹巍, 巩国丽. 近35年三北防护林体系建设工程的防风固沙效应[J]. 地理科学, 2018, 38(4): 600-609. |
[9] | 尹剑, 欧照凡, 付强, 刘东, 邢贞相. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018, 38(3): 448-456. |
[10] | 徐培罡, 张海青, 王超, 齐岗, 李杰, 吴静阳. 基于多重分割关联子的高分辨率遥感场景分类[J]. 地理科学, 2018, 38(2): 293-299. |
[11] | 孟祥锐, 张树清, 臧淑英. 基于卷积神经网络和高分辨率影像的湿地群落遥感分类——以洪河湿地为例[J]. 地理科学, 2018, 38(11): 1914-1923. |
[12] | 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018, 38(10): 1643-1652. |
[13] | 冯浩城, 杨青山. 基于遥感数据的建三江垦区城镇用地扩张时空特征及驱动力分析[J]. 地理科学, 2017, 37(8): 1178-1185. |
[14] | 赵海根, 杨胜天, 周旭. 基于数据同化技术的延河流域绿水模拟研究[J]. 地理科学, 2017, 37(7): 1112-1119. |
[15] | 毛东雷, 蔡富艳, 雷加强, 杨雪峰, 杨余辉, 薛杰. 新疆策勒沙漠-荒漠-绿洲典型下垫面小气候空间变化分析[J]. 地理科学, 2017, 37(4): 630-640. |
|