地理科学 ›› 2017, Vol. 37 ›› Issue (12): 1885-1893.doi: 10.13249/j.cnki.sgs.2017.12.012
袁方1(), 谢远云1(
), 詹涛2, 康春国3, 迟云平1, 马永法2
收稿日期:
2016-12-06
修回日期:
2017-03-21
出版日期:
2017-12-20
发布日期:
2017-12-20
作者简介:
作者简介:袁方(1992-),女,硕士,主要研究方向为亚洲风尘系统物源示踪。E-mail:
基金资助:
Fang Yuan1(), Yuanyun Xie1(
), Tao Zhan2, Chunguo Kang3, Yunping Chi1, Yongfa Ma2
Received:
2016-12-06
Revised:
2017-03-21
Online:
2017-12-20
Published:
2017-12-20
Supported by:
摘要:
对杜蒙沙地的河流冲积砂、河漫滩泥质粉砂、沙质古土壤和风成沙等不同类型沉积物进行了采样(27组),对这些样品的细颗粒组分(<63 μm)进行了常量元素、微量元素、稀土元素(REE)和Sr-Nd同位素比值等地球化学分析,就杜蒙沙地的化学风化、沉积再循环特征及其对风尘物质的贡献等展开了讨论。结果显示,杜蒙沙地的地球化学组成表现出空间的均一性,低的化学蚀变指数CIA(48~56,平均52)及A-CN-K和A-CNK-FM图解均表明了杜蒙沙地仅遭受了低级的化学风化程度。沙地的成分成熟度较低,大部分河流沉积物表现出初次循环沉积特征,系大兴安岭东侧中酸性岩浆母岩风化剥蚀的产物经嫩江搬运堆积形成;古土壤表现出与河流沉积物相同的初次循环特征,表明古土壤的成土母质是河流沉积物,这与野外地层出露情况一致;风成沙表现出再循环沉积特征,系河流沉积物就地起沙搬运堆积形成。不活动元素比值、REE和Sr-Nd同位素比值等物源判别图解,结合植被和地貌状况,一致表明杜蒙沙地与东北平原中东部的风尘物质没有地球化学亲缘关系,其对该地区(甚至下风向更远地区)的大气风尘的贡献很小。
中图分类号:
袁方, 谢远云, 詹涛, 康春国, 迟云平, 马永法. 地球化学组成揭示的杜蒙沙地化学风化和沉积再循环特征及其对风尘物质贡献的指示[J]. 地理科学, 2017, 37(12): 1885-1893.
Fang Yuan, Yuanyun Xie, Tao Zhan, Chunguo Kang, Yunping Chi, Yongfa Ma. Source-area Weathering and Recycled Sediment for Dumeng Sandy Land Inferred from Geochemistry Compositions: Implication for Contribution to Aeolian Dust[J]. SCIENTIA GEOGRAPHICA SINICA, 2017, 37(12): 1885-1893.
表1
杜蒙沙地的Sr-Nd同位素组成"
样品号 | 87Sr/86Sr | 143Nd/144Nd | εNd(0)a |
---|---|---|---|
SN1 | 0.7098 | 0.5123 | -5.8911 |
SN3 | 0.7089 | 0.5124 | -3.8429 |
SN71 | 0.7095 | 0.5123 | -6.8274 |
SN5 | 0.7089 | 0.5124 | -5.3839 |
SN7 | 0.7089 | 0.5123 | -5.8521 |
SN53 | 0.7080 | 0.5124 | -4.6036 |
SN54 | 0.7083 | 0.5123 | -6.4373 |
SN59 | 0.7084 | 0.5123 | -6.9445 |
SN60 | 0.7090 | 0.5123 | -7.2566 |
SN8 | 0.7086 | 0.5124 | -5.1888 |
SN9 | 0.7090 | 0.5124 | -4.8962 |
SN11 | 0.7081 | 0.5124 | -3.9014 |
SN12 | 0.7089 | 0.5124 | -4.7012 |
SN47 | 0.7082 | 0.5123 | -5.7155 |
SN48 | 0.7090 | 0.5123 | -6.9250 |
SN49 | 0.7091 | 0.5124 | -5.4424 |
SN50 | 0.7080 | 0.5123 | -6.9250 |
[1] |
McLennan S M, Hemming S, McDaniel D Ket al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Paper, 1993, 284: 21-40.
doi: 10.1002/aehe.3640101003 |
[2] |
Ahmad I, Mondal M E A, Satyanarayanan M. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction[J]. Journal of Asian Earth Sciences, 2016, 126: 58-73.
doi: 10.1016/j.jseaes.2016.05.019 |
[3] |
Cullers R L.The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A.[J]. Chemical Geology, 1995, 123: 107-131.
doi: 10.1016/0009-2541(95)00050-V |
[4] |
Cox R, Lowe D R, Cullers R L.The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
doi: 10.1016/0016-7037(95)00185-9 |
[5] |
Xu D R, Gu X X, Li P C et al. Mesoproterozoic-Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China[J]. Journal of Asian Earth Sciences, 2007, 29: 637-650.
doi: 10.1016/j.jseaes.2006.04.006 |
[6] |
Ding Z L, Sun J M, Yang S L et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change[J]. Geochimica et Cosmochimica Acta, 2001, 65(6): 901-913.
doi: 10.1016/S0016-7037(00)00571-8 |
[7] |
Chen J, Li G J, Yang J D et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3904-3914.
doi: 10.1016/j.gca.2007.04.033 |
[8] |
Li G J, Chen J, Ji J F et al. Natural and anthropogenic sources of East Asian dust[J]. Geology, 2009, 37(8): 727-730.
doi: 10.1130/G30031A.1 |
[9] |
Hao Q Z, Guo Z T, Qiao Y S et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29: 3317-3326.
doi: 10.1016/j.quascirev.2010.08.004 |
[10] |
Xie Y Y, Meng J, Guo L F.REE geochemistry of modern eolian dust deposits in Harbin city, Heilongjiang province, China: Implications for provenance[J]. Catena, 2014, 123: 70-78.
doi: 10.1016/j.catena.2014.07.008 |
[11] |
Xie Y Y, Chi Y P.Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess[J]. Journal of Asian Earth Sciences, 2016, 120: 43-61.
doi: 10.1016/j.jseaes.2016.01.025 |
[12] |
Chen J, Li G J.Geochemical studies on the source region of Asian dust[J]. Sci China Earth Sci, 2011, 54: 1279-1301.
doi: 10.1007/s11430-011-4269-z |
[13] |
谢远云,孟杰,郭令芬, 等. 松嫩平原杜蒙沙地地表物质的地化组成及风化特征[J]. 中国沙漠, 2013, 33(4): 1009-1018.
doi: 10.7522/j.issn.1000-694X.2013.00143 |
[ Xie Yuanyun, Meng Jie, Guo Lingfen et al. Geochemical characteristics and weathering feature of surface sediment in Dumeng sandy land, Northeast China. Journal of Desert Research, 2013, 33(4): 1009-1018.]
doi: 10.7522/j.issn.1000-694X.2013.00143 |
|
[14] | 谢远云,孟杰,郭令芬, 等. 地球化学组成在不同粒级中的分布特征: 以哈尔滨城市道路表土为例[J]. 地理科学, 2012, 32(11): 1397-1403. |
[ Xie Yuanyun, Meng Jie, Guo Lingfen et al. The distribution of geochemical characteristics in different grain-size fractions: a case study of road surface soils in Harbin City. Scientia Geographica Sinica, 2012, 32(11): 1397-1403.] | |
[15] | Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. London: Oxford Blackwell, 1985. |
[16] |
Wronkiewicz D J, Condie K C.Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance[J]. Geochimica et Cosmochimica Acta, 1987, 51: 2401-2416.
doi: 10.1016/0016-7037(87)90293-6 |
[17] |
Fedo C M, Nesbitt H W, Young G M.Unraveling the effects of potassium metasomatism in sedimentary rocks and Paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23: 921-924.
doi: 10.1130/0091-7613(1995)0232.3.CO;2 |
[18] |
Nesbitt H W, Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
doi: 10.1038/299715a0 |
[19] |
McLennan S M. Weathering and Global Denudation[J]. Journal of Geology, 1993, 101: 295-303.
doi: 10.1086/648222 |
[20] |
Nesbitt H W, Young G M.Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48: 1523-1534.
doi: 10.1016/0016-7037(84)90408-3 |
[21] |
Nesbitt H W, Young G M.Formation and Diagenesis of Weathering Profiles[J]. Journal of Geology, 1989, 97: 129-147.
doi: 10.1086/629290 |
[22] | McLennan S M, Hemming S, McDaniel D Ket al. Geochemical approaches to sedimentation, provenance, and tectonics[M]. In: Johnsson, M.J. & Basu, A. (eds) Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 1993, 284: 21-40. |
[23] |
Cullers R L, Podkovyrov V N.Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104, 77-93.
doi: 10.1016/S0301-9268(00)00090-5 |
[24] |
Condie K C.Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104: 1-37.
doi: 10.1016/0009-2541(93)90140-E |
[25] |
Yang H, Ge W C, Yu Q et al. Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and petrogenesis of Middle to Late Triassic I-type granitoids in the Xing’an Block, northeast China: Implications for early Mesozoic tectonic evolution of the central Great Xing’an Range[J]. Journal of Asian Earth Sciences, 2016, 119: 30-48.
doi: 10.1016/j.jseaes.2016.01.012 |
[26] |
Roser B P, Korsch R J.Provenance signatures of sandstone-mudstone suite determined using discriminant function analysis of major element data[J]. Chemical Geology, 1988, 67: 119-139.
doi: 10.1016/0009-2541(88)90010-1 |
[27] |
Garzanti E, Padoan M, Andò S et al. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift[J]. The Journal of Geology, 2013, 121: 547-580.
doi: 10.1086/673259 |
[28] |
Ohta T, Arai H.Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering[J]. Chemical Geology, 2007, 240: 280-297.
doi: 10.1016/j.chemgeo.2007.02.017 |
[29] |
Ohta T.Measuring and adjusting the weathering and hydraulic sorting effects for rigorous provenance analysis of sedimentary rocks: a case study from the Jurassic Ashikita Group, south-west Japan[J]. Sedimentology, 2008, 55: 1687-1701.
doi: 10.1111/sed.2008.55.issue-6 |
[30] |
Sun J M.Source regions and formation of the loess sediments on the high mountain regions of northwestern China[J]. Quaternary Research, 2002, 58(3): 341-351.
doi: 10.1006/qres.2002.2381 |
[31] | 裘善文. 中国东北西部沙地与沙漠化[M]. 北京: 科学出版社,2008. |
[Qiu Shanwen.Sandy land and sandy desertification in western Northeastern China. Beijing: Science Press, 2008.] | |
[32] | 何葵, 谢远云, 张丽娟, 等. 哈尔滨2002年3月20日沙尘暴沉降物的粒度特征及其意义[J]. 地理科学, 2005, 25(5): 87-90. |
[He Kui, Xie Yuanyun, Zhang Lijuan et al. Grain size characteristic of sand-dust sediments in Harbin city and its implication. Scientia Geographica Sinica, 2005, 25(5): 87-90.] | |
[33] |
Bhatia M R.Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45: 97-113.
doi: 10.1016/0037-0738(85)90025-9 |
[34] |
Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92: 181-193.
doi: 10.1007/BF00375292 |
[35] |
Condie K C.1991. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2527-2531.
doi: 10.1016/0016-7037(91)90370-K |
[36] |
Rao W B, Chen J, Yang J D et al. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: Implications for their provenances[J]. Geochemical Journal, 2008, 42: 273-282.
doi: 10.2343/geochemj.42.273 |
[1] | 魏东岚, 沈俊杰, 李永化. 红色风化壳地球化学特征及对古气候演变的响应——以辽南石槽剖面为例[J]. 地理科学, 2018, 38(2): 307-313. |
[2] | 郭媛媛, 莫多闻, 毛龙江, 郭伟民, 顾海滨. 澧阳平原岩板垱剖面地球化学特征与风化强度研究[J]. 地理科学, 2013, 33(3): 335-341. |
[3] | 谢远云, 孟杰, 郭令芬, 何葵, 康春国. 地球化学组成在不同粒级中的分布特征——以哈尔滨城市道路表土为例[J]. 地理科学, 2012, 32(11): 1397-1403. |
[4] | 李晶莹, 张经. 中国主要流域盆地风化剥蚀率的控制因素[J]. 地理科学, 2003, 23(4): 434-440. |
[5] | 郭媛媛, 莫多闻, 毛龙江, 郭伟民, 顾海滨. 澧阳平原岩板垱剖面地球化学特征与风化强度研究[J]. 地理科学, 0, 0(): 0-0. |
|