地理科学 ›› 2018, Vol. 38 ›› Issue (2): 284-292.doi: 10.13249/j.cnki.sgs.2018.02.015284-292王苗苗s/img_1.jpg1961.01.0
收稿日期:
2017-02-17
修回日期:
2017-03-21
出版日期:
2018-04-10
发布日期:
2018-04-10
作者简介:
作者简介:王苗苗(1991-),女,福建古田人,博士研究生,主要从事生态遥感及生态模型研究。E-mail:
基金资助:
Miaomiao Wang1,2(), Lei Zhou1(
), Shaoqiang Wang1,2, Xiaoqin Wang3
Received:
2017-02-17
Revised:
2017-03-21
Online:
2018-04-10
Published:
2018-04-10
Supported by:
摘要:
基于生态过程机理模型BEPS(Boreal Ecosystem Productivity Simulator)和卫星遥感资料模拟了2001~2010年中国东北地区陆地生态系统总初级生产力(GPP)的时空分布特征,分析了生长季长度变化及其对东北地区陆地生态系统GPP的影响。研究表明:① 2001~2010年东北地区生长季开始时间、结束时间及生长季长度均没有显著的变化趋势,生长季长度的变化主要受到春季温度的影响。② 东北地区陆地生态系统年均GPP总值为1 057.8±44.6 TgC,其中生长季内GPP值约占总GPP值的97.57%,即东北地区GPP主要是在生长季内固定的碳量。③ 东北地区GPP主要受降水量的调节,而生长季长度变化对GPP的影响并不显著。
中图分类号:
王苗苗, 周蕾, 王绍强, 汪小钦. 东北地区生长季长度变化及其对总初级生产力的影响分析[J]. 地理科学, 2018, 38(2): 284-292.
Miaomiao Wang, Lei Zhou, Shaoqiang Wang, Xiaoqin Wang. Change of Growing Season Length and Its Effects on Gross Primary Productivity in Northeast China[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(2): 284-292.
[1] | IPCC, Climate change 2013: the physical science basis. Working Group I contributionto the IPCC Fifth assessment report, Final Draft Underlying Scientific-Technical Assessment(7 June,2013). change 2013: the physical science basis. Working Group I contributionto the IPCC Fifth assessment report, Final Draft Underlying Scientific-Technical Assessment(7 June,2013).. Working Group I contributionto the IPCC Fifth assessment report, Final Draft Underlying Scientific-Technical Assessment(7 June,2013). change 2013: the physical science basis. Working Group I contributionto the IPCC Fifth assessment report, Final Draft Underlying Scientific-Technical Assessment(7 June,2013).. |
[2] |
Walther G R, Post E, Convey P et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389-395.
doi: 10.1038/416389a |
[3] |
Ahas R J, Jaagus, and Aasa A. The phenological calendar of Estonia and its correlation with mean air temperature[J]. International Journal of Biometeorology, 2000, 44(4): 159-166.
doi: 10.1007/s004840000069 |
[4] |
Stockli R and Vidale P L. European plant phenology and climateas seen in a 20-year AVHRR land-surface parameter dataset[J]. International Journal of Remote Sensing, 2004, 25(17): 3303-3330.
doi: 10.1080/01431160310001618149 |
[5] |
Chapin F S, Sturm M, Serreze M C et al. Role of land-surface changes in Arctic summer warming[J]. Science, 2005, 310(5748): 657-660.
doi: 10.1126/science.1117368 pmid: 16179434 |
[6] |
Niemand C. Koster B, Prasse H.Relating tree phenology with annual carbon fluxes at Tharandt forest[J].Meteorologische Zeitschrift, 2005, 14(2): 197-202.
doi: 10.1127/0941-2948/2005/0022 |
[7] |
Keenan T, Gray J, Friedl M et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology[J]. Nature Climate Change, 2014, 4(7):598-604.
doi: 10.1038/nclimate2253 |
[8] |
Piao S, Friedlingstein P, Ciais P et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[J]. Global Biochemical Cycles, 2007, 21(3):1-11.
doi: 10.1029/2006GB002888 |
[9] |
Richardson A, Black T, Ciais P et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity[J]. Philosopical Transactions of the Royal Society B-Biological Sciences, 2010, 365(1555): 3227-3246.
doi: 10.1098/rstb.2010.0102 pmid: 20819815 |
[10] | Buermann W, Bikash P, Jung M et al. Earlier springs decrease peak summer productivity in North American boreal forests[J]. Environmental Research letter, 2013,8(2):24-27. |
[11] |
Schwalm C, Williams C, Schaefer K et al. Reduction in carbon uptake during turn of the century drought in western North America[J]. Nature Geoscience, 2012,5(8):551-556.
doi: 10.1038/ngeo1529 |
[12] |
White M A, Running S W, Thornton P E.The impact of growing season length variability on carbon assimilation andevapotranspiration over 88 years in the eastern US deciduousforest[J]. International Journal of Biometeorology, 1999, 42(3): 139-145.
doi: 10.1007/s004840050097 pmid: 10083835 |
[13] |
Walther A, Linderholm H W.A comparison of growing season indices for the Greater Baltic Area[J]. International Journal of Biometeorology, 2006, 51(2): 107-118.
doi: 10.1007/s00484-006-0048-5 pmid: 16932889 |
[14] | 杨永辉, 王智平, 佐仓保夫, 等. 全球变暖对太行山植被生产力及土壤水分的影响[J]. 应用生态学报,2002,13(6): 667-671. |
[Yang Yonghui, Wang Zhiping, Yasuo SAKURA et al. Effects of global warming on productivity and soil moisture in Taihang Mountain:A transplant study. Chinese Journal of Applied Ecology, 2002, 13(6):667-671.] | |
[15] |
Bachelet D, Neilson R P, Lenihan J M et al. Climate change effects on vegetation distribution and carbon budget in the United States[J]. Ecosystems, 2001,4(3):164-185.
doi: 10.1007/s10021-001-0002-7 |
[16] |
Pan Y, Birdsey R, Fang J Y et al. A large and persistent carbon sink in the world’s forests[J].Science, 2011, 333(6045): 988-993.
doi: 10.1126/science.1201609 pmid: 21764754 |
[17] |
叶瑜, 方修琦, 张学珍, 等. 过去300年东北地区林地和草地覆盖变化[J]. 北京林业大学学报, 2009, 31(5): 137-144.
doi: 10.1016/j.elecom.2008.10.019 |
[Ye Yu, Fang Xiuqi,Zhang Xuezhen et al. Coverage changes of forestland and grassland in northeastern China during the past 300 years. Journal of Beijing Forestry University, 2009, 31(5): 137-144.]
doi: 10.1016/j.elecom.2008.10.019 |
|
[18] |
Fang J Y, Chen A P, Peng C H et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322.
doi: 10.1126/science.1058629 pmid: 11423660 |
[19] |
董云社, 章申, 齐玉春, 等.内蒙古典型草地CO2、N2O、CH4通量的同时观测及其日变化[J].科学通报,2000,45(3):318-322.
doi: 10.3321/j.issn:0023-074X.2000.03.018 |
[Dong Yunshe, Zhang Shen,Qi Yuchun et al. CO2, N2O, CH4 fluxes observation and diurnal variation in Inner Mongolia grass land. Chinese Science Bulletin, 2000, 45(3):318-322.]
doi: 10.3321/j.issn:0023-074X.2000.03.018 |
|
[20] |
Wang X., Fang J, Tang Z et al. Climatic control of primary forest structure and DBH-heightallometry in Northeast China[J]. Forest Ecology and Management, 2006, 234(1-3): 264-274.
doi: 10.1016/j.foreco.2006.07.007 |
[21] |
Liu J, Chen J, Cihlar J et al.A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment, 1997, 62(2):158-175.
doi: 10.1016/S0034-4257(97)00089-8 |
[22] |
Liu J, Chen J, Cihlar J et al. Net primary productivity distribution in the BOREAS region from a process model using satellite andsurface data[J]. Journal of Geophysical Research, 1999, 104(D22):27735-27754.
doi: 10.1029/1999JD900768 |
[23] |
Running S W, Coughlan J C.A general model of forest ecosystem processes for regional applications. I.Hydrologic balance, canopy gas exchange and primary production processes[J]. Ecological Modelling, 1988, 42(2):125-154.
doi: 10.1016/0304-3800(88)90112-3 |
[24] |
Farquhar G D,Caemmerer S V and Berry J A. A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980,149(1): 78-90.
doi: 10.1007/BF00386231 pmid: 24306196 |
[25] |
Chen J, Liu J, Cihlar J et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J]. Ecological Modelling, 1999, 124(2-3):99-119.
doi: 10.1016/S0304-3800(99)00156-8 |
[26] |
Sun R, Chen J M, Zhu Q J et al. Spatial distribution of net primary productivity and evapotranspiration in Changbaishan Natural Reserve, China, using Landsat ETM plus data[J]. Canadian Journal of Remote Sensing, 2004, 30(5): 731-742.
doi: 10.5589/m04-040 |
[27] |
Wang Q F, Niu D, Yu G R et al. Simulating the exchanges of carbon dioxide, water vapor and heat over Changbai Mountains temperate broad leaved Korean pine mixed forest ecosystem[J]. Science in China Series D-earth sciences, 2005, 48(1):148-159.
doi: 10.1360/05zd0015 |
[28] |
Feng X, Liu G, Chen J M et al. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing[J]. Journal of Environmental Management, 2007, 85(3): 563-573.
doi: 10.1016/j.jenvman.2006.09.021 pmid: 17234327 |
[29] |
Ju W M, Gao P, Wang J et al. Combining an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate[J]. Agricultural Water Management, 2010, 97(8): 1221-1231.
doi: 10.1016/j.agwat.2009.12.007 |
[30] |
Liu Y, Ju W, He H et al. Changes of net primary productivity in China during recent 11 years detectedusing an ecological model driven by MODIS data[J]. Frontiers of Earth Science, 2013, 7(1): 112-127.
doi: 10.1007/s11707-012-0348-5 |
[31] |
Hutchinson M F.Interpolating mean rainfall using thin platesmoothing splines[J]. International Journal of Geographical Information Science, 1995, 9: 385-403.
doi: 10.1080/02693799508902045 |
[32] | Hutchinson M F.ANUSPLIN Version 4.2 User Guide. Centre for resource and environment studies[J]. Australian National University, Canberra, 2002. |
[33] | 朱旭东, 何洪林, 刘敏, 等. 近50年中国光合有效辐射的时空变化特征[J]. 地理学报, 2010, 65(3): 270-280. |
[Zhu Xudong, He Honglin, Liu Min et al. Spatio-temporal variation characteristics of photo synthetically active radiation in China in recent 50 years. Acta Geographica Sinica, 2010, 65(3): 270-280.] | |
[34] |
Chen J M, Black T A.Defining leaf area index for non-flatleaves, Plant[J]. Cell and Environment, 1992, 15(4):421-429.
doi: 10.1111/j.1365-3040.1992.tb00992.x |
[35] | 柳艺博, 居为民, 陈镜明, 等. 2000-2010年中国森林叶面积指数时空变化特征[J].科学通报,2012, 57(16): 1435-1445. |
[Liu Yibo, Ju Weimin, Chen Jingming et al. Spatial and temporal variations of forest LAI in China during 2000-2010. Chinese Science Bulletin, 2012, 57(16): 1435-1445] | |
[36] |
吴炳方, 苑全治, 颜长珍, 等. 21世纪前十年的中国土地覆盖变化[J].第四纪研究, 2014, 34(4): 723-731.
doi: 10.3969/j.issn.1001-7410.2014.04.04 |
[Wu Bingfang, Yuan Quanzhi,Yan Changzhen et al. Land cover changes of China from 2000 to 2010. Quaternary Sciences, 2014, 34(4): 723-731.]
doi: 10.3969/j.issn.1001-7410.2014.04.04 |
|
[37] |
Frich P, Alexander L V, Della-Marta P et al. Observed coherent changes in climatic extremes during the second half of the twentieth century[J].Climate Research, 2002, 19(3): 193-212.
doi: 10.3354/cr019193 |
[38] | 郭灵辉, 吴绍洪, 赵东升,等. 近50年内蒙古地区生长季变化趋势[J]. 地理科学, 2013, 33(4):505-512. |
[Guo Linghui, Wu Shaohong,Zhao Dongsheng et al. Change trends of growing season over Inner Mongolia in the past 50 years. Scientia Geographic Sinica, 2013, 33(4):505-512. ] |
[1] | 程利莎,王士君,杨冉. 中国东北地区地缘关系演化过程及区域效应[J]. 地理科学, 2019, 39(8): 1284-1292. |
[2] | 王绍博, 罗小龙, 郭建科, 张培刚, 顾宗倪. 高铁网络化下东北地区旅游空间结构动态演变分析[J]. 地理科学, 2019, 39(4): 568-577. |
[3] | 朱建华, 修春亮. 1949年以来东北地区行政区划演变格局与成因分析[J]. 地理科学, 2019, 39(4): 606-615. |
[4] | 贾占华, 谷国锋. 东北地区经济结构失衡水平评价及其对经济增长的影响研究——基于空间计量模型分析[J]. 地理科学, 2019, 39(4): 636-643. |
[5] | 王利, 刘万波, 赵东霞, 韩增林, 黄馨慧. 东北地区县域老年人口高龄化空间分异特征及驱动因素研究[J]. 地理科学, 2019, 39(2): 267-276. |
[6] | 张平宇, 刘大千, 刘世薇. 人文地理研究回顾与展望——庆贺中国科学院东北地理与农业生态研究所成立60周年[J]. 地理科学, 2018, 38(7): 1012-1022. |
[7] | 任嘉敏, 马延吉. 东北老工业基地绿色发展评价及障碍因素分析[J]. 地理科学, 2018, 38(7): 1042-1050. |
[8] | 关伟, 郝金连. 东北地区旅游经济影响因素时空特征研究[J]. 地理科学, 2018, 38(6): 935-943. |
[9] | 陈妍, 梅林. 东北地区资源型城市人口分布与影响因素的定量分析[J]. 地理科学, 2018, 38(3): 402-409. |
[10] | 周宏浩, 陈晓红. 东北地区可持续生计安全时空分异格局及障碍因子诊断[J]. 地理科学, 2018, 38(11): 1864-1874. |
[11] | 于婷婷, 宋玉祥, 阿荣, 浩飞龙, 朱邦耀. 东北地区人口结构与经济发展耦合关系研究[J]. 地理科学, 2018, 38(1): 114-121. |
[12] | 陈妍, 梅林. 东北地区资源型城市经济转型发展波动特征与影响因素——基于面板数据模型的分析[J]. 地理科学, 2017, 37(7): 1080-1086. |
[13] | 王洪桥, 袁家冬, 孟祥君. 东北地区A级旅游景区空间分布特征及影响因素[J]. 地理科学, 2017, 37(6): 895-903. |
[14] | 王士君, 田俊峰, 王彬燕, 程利莎, 杜国明. 精准扶贫视角下中国东北农村贫困地域性特征及成因[J]. 地理科学, 2017, 37(10): 1449-1458. |
[15] | 焦敬娟, 王姣娥, 刘志高. 东北地区创新资源与产业协同发展研究[J]. 地理科学, 2016, 36(9): 1338-1348. |
|