地理科学 ›› 2018, Vol. 38 ›› Issue (5): 790-799.doi: 10.13249/j.cnki.sgs.2018.05.017
所属专题: 气候变化与地表过程
收稿日期:
2017-06-02
修回日期:
2017-10-11
出版日期:
2018-05-10
发布日期:
2018-05-10
作者简介:
作者简介:孙从建(1986-),男,河北沧州人,博士,副教授,主要从事水循环及同位素水文研究。E-mail:
基金资助:
Received:
2017-06-02
Revised:
2017-10-11
Online:
2018-05-10
Published:
2018-05-10
Supported by:
摘要:
对海河流域源区的丰、枯水期降水、地下水、河水进行取样测试,分析了海河源区不同水体氢氧稳定同位素组成及水化学的时空分布特征,同时运用同位素二元混合模型对典型采样点地表水地下水间的相互作用进行了定量分析。结果表明:① 丰水期地下水及地表水δD和δ18O及总溶解性固体(TDS)表现出显著的空间差异性,而枯水期只有地下水的同位素组成及水化学特性表现出空间差异。②研究区的地下水水化学类型以Ca-HCO3·SO4、Ca-HCO3型为主,丰水期河水与地下水化学类型较为相似,枯水期地下水化学类型与同时期的河水及大气降水的水化学类型存在显著的差异,说明枯水期地表水与地下水之间的转化关系不明显。Gibbs分析结果表明,控制海河源区水体化学性质的主要影响为岩石风化作用。③枯水期地下水受其他水体影响较弱,而丰水期河水及大气降水对地下水具有显著的补给作用,3个源流区中西源的地表河水对地下水影响最显著。
中图分类号:
孙从建, 陈伟. 基于稳定同位素的海河源区地下水与地表水相互关系分析[J]. 地理科学, 2018, 38(5): 790-799.
Congjian Sun, Wei Chen. Relationship Between Groundwater and Surface Water Based on Environmental Isotope and Hydrochemistry in Upperstream of the Haihe River Basin[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(5): 790-799.
表1
研究区域采样点信息"
河 段 | 类型 | 时间 | 样本 | 埋深 | δD均值 | δ18O均值 | 氘盈余 | pH | TDS | 温度 | 降水量 |
---|---|---|---|---|---|---|---|---|---|---|---|
(个) | (m) | (‰) | (‰) | 均值(‰) | (mg/L) | (℃) | (mm) | ||||
西源 | 河 水 | 2016.02 | 3 | -40.53 | -4.80 | -2.13 | 8.20 | 647.33 | 2.3 | ||
2016.08 | 3 | -62.52 | -8.49 | 5.43 | 7.41 | 922.67 | 21.5 | ||||
地下水 | 2016.02 | 9 | 25 | -67.03 | -9.01 | 5.05 | 8.18 | 502.14 | |||
2016.08 | 8 | 22 | -62.62 | -8.35 | 4.19 | 7.58 | 558.00 | ||||
南源 | 河 水 | 2016.02 | 2 | -28.00 | -2.42 | -8.67 | 7.76 | 116.90 | 3.5 | ||
2016.08 | 2 | -64.97 | -8.89 | 6.13 | 7.65 | 455.00 | 22.1 | ||||
地下水 | 2016.02 | 3 | 15 | -67.46 | -9.44 | 8.06 | 8.03 | 406.33 | |||
2016.08 | 4 | 14 | -59.01 | -8.28 | 7.22 | 7.43 | 536.75 | ||||
北源 | 河 水 | 2016.02 | 3 | -54.74 | -6.72 | -0.95 | 8.28 | 629.50 | 2.6 | ||
2016.08 | 3 | -57.77 | -7.44 | 1.78 | 7.47 | 815.00 | 20.2 | ||||
地下水 | 2016.02 | 3 | 19 | -66.36 | -9.06 | 6.09 | 8.24 | 454.67 | |||
2016.08 | 3 | 18 | -64.86 | -8.56 | 3.62 | 7.62 | 521.00 | ||||
降水 | 2016.02 | 3 | -74.40 | -10.60 | 59.30 | 11.3 | |||||
2016.08 | 7 | -56.12 | -8.11 | 99.20 | 49.6 |
表2
研究区域不同水体主要离子含量信息(mg/L)"
时期 | 类型 | 区域 | Na+ | K+ | Mg2+ | Ca2+ | Cl- | HCO3- | SO42- |
---|---|---|---|---|---|---|---|---|---|
枯水期 | 地下水 | 西源 | 23.9 | 0.5 | 16.7 | 62.6 | 11.9 | 283.3 | 23.5 |
北源 | 23.5 | 1.7 | 22.9 | 83.5 | 30.4 | 250.0 | 84.3 | ||
南源 | 22.6 | 0.7 | 17.8 | 82.3 | 24.0 | 267.8 | 37.7 | ||
河水 | 西源 | 29.9 | 3.4 | 14.3 | 53.1 | 31.4 | 219.8 | 62.5 | |
北源 | 57.3 | 4.1 | 28.9 | 92.4 | 76.3 | 163.5 | 188.4 | ||
南源 | 24.0 | 1.2 | 14.1 | 53.8 | 17.6 | 213.0 | 48.0 | ||
丰水期 | 地下水 | 西源 | 23.9 | 2.4 | 21.2 | 65.4 | 21.9 | 267.2 | 58.0 |
北源 | 20.9 | 1.5 | 18.7 | 60.8 | 15.9 | 252.3 | 44.1 | ||
南源 | 20.6 | 3.3 | 15.8 | 53.9 | 21.8 | 215.1 | 54.7 | ||
河水 | 西源 | 25.5 | 2.5 | 19.5 | 66.8 | 27.6 | 228.6 | 92.7 | |
北源 | 31.6 | 3.0 | 14.2 | 44.0 | 28.6 | 201.9 | 58.4 | ||
南源 | 50.8 | 2.3 | 42.7 | 184.4 | 104.8 | 398.2 | 120.3 |
[1] |
王中根, 朱新军, 李尉, 等. 海河流域地表水与地下水耦合模拟[J]. 地理科学进展, 2011, 30(11):1345-1353.
doi: 10.11820/dlkxjz.2011.11.003 |
[Wang Zhonggen, Zhu Xinjun, Li Wei et al. A coupled surface-water/groundwater model for Haihe river basin. Progress in Geography. 2011, 30(11):1345-1353.]
doi: 10.11820/dlkxjz.2011.11.003 |
|
[2] |
Winter. Recent advances in understanding the interaction of groundwater and surface water[J]. Review of Geophysics, 1995, 33: 985-994.
doi: 10.1029/95RG00115 |
[3] |
Tim C, Brian M G, John M. Stream-groundwater exchange and hydrologic turnover at the network scale[J]. Water Resources Research, 2011, 47(12):1-11.
doi: 10.1029/2011WR010942 |
[4] |
Guo Y, Shen Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe river basin, China: 1. Model and validation[J]. Journal of Hydrology, 2015, 528(2): 206-216.
doi: 10.1016/j.jhydrol.2015.04.071 |
[5] |
Guo Y, Shen Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe river basin, China: 2. Trends and implications to water resources[J]. Journal of Hydrology, 2015, 527(2): 251-261.
doi: 10.1016/j.jhydrol.2015.04.071 |
[6] | 房晓君. 漳河上游地表水与地下水相互作用规律研究[D].邯郸:河北工程大学, 2014. |
[Fang Xiaojun.The study of the interaction rule between surfacewater and groundwater in the upstream of Zhanghe River. Handan: Hebei University of Engineering, 2014.] | |
[7] |
贾绍凤, 张士锋. 海河流域水资源安全评价[J]. 地理科学进展, 2003, 22(4): 379-387.
doi: 10.3969/j.issn.1007-6301.2003.04.006 |
[Jia Shaofeng, Zhang Shifeng. Water resources security appraisement of Haihe Basin. Progress in Geography, 2003, 22(4): 379-387.]
doi: 10.3969/j.issn.1007-6301.2003.04.006 |
|
[8] |
刘春蓁, 刘志雨, 谢正辉. 近50年海河流域径流的变化趋势研究[J]. 应用气象学报, 2004, 15(4): 385-39.
doi: 10.3969/j.issn.1001-7313.2004.04.001 |
[Liu Chunzhen, Liu Zhiyu, Xie Zhenghui. Study of trends in runoff for the Haihe river basin in recent 50 years. Journal of Applied Meteorological Science, 2004, 15(4): 385-39.]
doi: 10.3969/j.issn.1001-7313.2004.04.001 |
|
[9] |
刘家宏, 秦大庸, 王浩 等. 海河流域二元水循环模式及其演化规律[J]. 科学通报, 2010, 55(6): 512-521.
doi: 10.1360/csb2010-55-6-512 |
[Liu Jiahong, Qin Dayong, Wang Hao et al. Dualistic water cycle pattern and its evolution in Haihe river basin. Chinese Science Bulletin, 2010, 55(6): 512-521.]
doi: 10.1360/csb2010-55-6-512 |
|
[10] |
袁瑞强, 宋献方, 王鹏, 等. 白洋淀渗漏对周边地下水的影响[J]. 水科学进展, 2012, 23(6): 751-756.
doi: CNKI: 32.1309.P.20121101.1801.020 |
[Yuan Ruiqiang, Song Xianfang, Wang Peng et al. Impacts of percolation in Baiyangdian Lake on groundwater. Advances in Water Science Wang Peng Impacts of percolation in Baiyangdian Lake on groundwater. Advances in Water Science, 2012, 23(6): 751-756.]
doi: CNKI: 32.1309.P.20121101.1801.020 |
|
[11] | 王桃良, 赵春红, 梁永平, 等. 地表水渗漏对娘子关岩溶泉泉水水质的影响[J]. 水文, 2015(5): 41-45. |
[Wang Taoliang, Zhao Chunhong, Liang Yongping et al. Influence of surface water seepage on water quality in Niangziguan Spring Area. Hydrology, 2015(5): 41-45.] | |
[12] |
张济世, 康尔泗, 蓝永超, 等. 河西内陆河地表水与地下水转化及水资源利用率研究[J]. 冰川冻土, 2001, 23(4): 375-382.
doi: 10.3969/j.issn.1000-0240.2001.04.007 |
[Zhang Jishi, Kang Ersi, Lan Yongchao et al. Studies of the transformation between surface water and groundwater and the utilization ratio of water resources in Hexi region. Journal of Glaciology and Geocryology, 2001, 23(4): 375-382.]
doi: 10.3969/j.issn.1000-0240.2001.04.007 |
|
[13] |
宋献方, 刘鑫, 夏军, 等. 基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究[J]. 应用基础与工程科学学报, 2009, 17(1): 8-20.
doi: 10.3969/j.issn.1005-0930.2009.01.002 |
[Song Xianfang, Liu Xin, Xia jun et al. Interactions between surface water and groundwater in Chabagou Catchment using hydrogen and oxygen isotopes. Journal of Basic Science and Engineering.2009, 17(1): 8-20.]
doi: 10.3969/j.issn.1005-0930.2009.01.002 |
|
[14] | 王亚俊, 宋献方, 马英, 等. 北京东南郊再生水灌区不同水体氢氧同位素特征及成因[J]. 地理研究,2017, 36(2): 361-372. |
[Wang Yajun, Song Xianfang, Ma Ying et al. Characterizing the hydrogen and oxygen isotopic compositions of different waters at reclaimed water irrigated district in southeast suburb of Beijing. Geographical Research,2017, 36(2): 361-372.] | |
[15] |
于静洁, 宋献方, 刘相超, 等. 基于δD和δ18O及水化学的永定河流域地下水循环特征解析[J]. 自然资源学报, 2007, 22(3): 415-423.
doi: 10.3321/j.issn:1000-3037.2007.03.011 |
[Yu Jingjie, Song Xianfang, Liu Xiangchao et al. A study of groundwater cycle in Yongding river basin by using δD, δ18O and hydrochemical data. Journal of Natural Resources, 2007, 22(3): 415-423.]
doi: 10.3321/j.issn:1000-3037.2007.03.011 |
|
[16] | 姚天次, 章新平, 李广, 等. 湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系[J]. 自然资源学报, 2016, 31(7): 1198-1210. |
[Yao Tianci, Zhang Xinping, Li Guang et al. Characteristics of the stable isotopes in different water bodies and their relationships in surrounding areas of Yuelu mountain in the Xiangjiang river basin. Journal of Natural Resources, 2016, 31(7): 1198-1210.] | |
[17] | 邓文平, 余新晓, 贾国栋, 等. 北京西山鹫峰地区氢氧稳定同位素特征分析[J]. 水科学进展, 2013, ,24(5): 642-650. |
[Deng Wenping, Yu Xinxiao, Jia Guodong et al. An analysis of characteristics of hydrogen Jia Guodong An analysis of characteristics of hydrogen and oxygen stable isotopes in Jiufeng mountain areas of Beijing. Advances in Water Science, 2013, ,24(5): 642-650.] | |
[18] |
宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究, 2007, 26(1): 11-21.
doi: 10.3321/j.issn:1000-0585.2007.01.002 |
[Song Xianfang, Li Fadong, Yu Jingjie et al. Characteristics of groundwater cycle using deuterium, oxygen 18 and hydrochemistry in Chaobai River Basin. Geographical Research, 2007, 26(1): 11-21.]
doi: 10.3321/j.issn:1000-0585.2007.01.002 |
|
[1] |
Wang S. Hydrochemical and isotopic characteristics of groundwater in the Yanqi basin of Xinjiang province, Northwest China[J]. Environmental Earth Sciences, 2014,71(1): 427-440.
doi: 10.1007/s12665-013-2450-8 |
[20] |
Huang T, Pang Z. Changes in groundwater induced by water diversion in the lower Tarim river, Xinjiang Uygur, NW China: Evidence from Environmental Isotopes and Water Chemistry[J]. Journal of Hydrology,2010,387: 188-201.
doi: 10.1016/j.jhydrol.2010.04.007 |
[21] |
Li A J, Schmitz O J, Stephan S et al. Photocatalytic transformation of acesulfame: transformation products identification and embryotoxicity study[J]. Water Research, 2015, 89: 68-75.
doi: 10.1016/j.watres.2015.11.035 pmid: 26630044 |
[22] | 沈照理, 朱宛华, 仲佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 86-133. |
[Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen.Basis of hydrogeochemistry. Beijing: Geological Publishing House, 1993: 86-133.] | |
[23] |
Sun Congjian, Chen Yaning, Li Weihong et al. Isotopic time-series partitioning of stream flow components under regional climate change in the Urumqi river, northwest China[J]. Hydrological Sciences Journal, 2015, 61(8), 1443-1459.
doi: 10.1080/02626667.2015.1031757 |
[24] | 魏静文. 华北平原地下水与地表水的水文地球化学及氢氧同位素特征分析[D]. 北京:中国地质大学,2012. |
[Wei Jingwen.Analysis of hydrogeochemical and stabe isotopes of surface water and groundwater in North China Plain. Beijing: China University of Geosciences, 2012.] | |
[25] | 孔晓乐, 王仕琴, 刘丙霞,等. 外来调水对华北低平原区地表水和地下水水化学特征的影响——以河北省南皮县为例[J]. 中国生态农业学报, 2016, 24(8):1135-1144. |
[Kong Xiaole, Wang Shiqin, Liu Bingxia et al. Effect of water diversion on hydro-chemical characteristics of surface water and groundwater in lowland area of the North China Plain: A case study of Nanpi County, Hebei Province. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1135-1144.] | |
[26] |
Li Z, Feng Q, Liu W et al. Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou river basin in the Qilian mountains[J]. Global & Planetary Change, 2014, 122(345-361):345-361.
doi: 10.1016/j.gloplacha.2014.10.001 |
[27] |
Penna D, van Meerveld H J, Zuecco Get al. Hydrological response of an Alpine catchment to rainfall and snowmelt events[J]. Journal of Hydrology, 2016, 537: 382-397.
doi: 10.1016/j.jhydrol.2016.03.040 |
[28] |
Sun C J, Chen Y N, Li X G et al. Analysis on the streamflow components of the typical inland river, Northwest China[J]. Hydrological Sciences Journal, 2015,61(5): 970-981.
doi: 10.1080/02626667.2014.1000914 |
[1] | 刘永林, 雒昆利, 李玲, 徐永新, 张湜溪, 田原. 新疆天然水化学特征区域分异及其地质成因[J]. 地理科学, 2016, 36(5): 794-802. |
[2] | 陈陆望, 殷晓曦, 刘鑫. 华北隐伏型煤矿深部含水层补给源水化学与同位素示踪[J]. 地理科学, 2013, 33(6): 755-762. |
[3] | 王君波, 鞠建廷, 朱立平. 季风期前后西藏纳木错湖水及入湖河流水化学特征变化[J]. 地理科学, 2013, 33(1): 90-96. |
[4] | 李红艳, 章光新, 李绪谦, 高蕊, 邓春暖. 扎龙湿地水质净化机理分析[J]. 地理科学, 2012, 32(1): 87-93. |
[5] | 温煜华, 王乃昂, 朱锡芬, 张华安, 马宏伟, 陈立. 天水及其南北地区地热水水化学特征及起源[J]. 地理科学, 2011, 31(6): 668-673. |
[6] | 蒲焘, 何元庆, 朱国锋, 辛惠娟, 杜建括, 王淑新, 王世金. 玉龙雪山周边典型河流雨季水化学特征分析[J]. 地理科学, 2011, 31(6): 734-740. |
[7] | 王君波, 朱立平, 鞠建廷, 汪勇. 西藏纳木错东部湖水及入湖河流水化学特征初步研究[J]. 地理科学, 2009, 29(2): 288-293. |
[8] | 李丽娟, 李海滨, 王娟. 澜沧江水文与水环境特征及其时空分异[J]. 地理科学, 2002, 22(1): 49-56. |
[9] | 王腊春, 许有鹏, 张立峰, 史运良, 汪文富. 贵州普定后寨地下河流域岩溶水特征研究[J]. 地理科学, 2000, (6): 557-562. |
[10] | 赵建. 海(咸)水入侵与浅层地下水水化学特征及变化研究[J]. 地理科学, 1999, 19(6): 525-531. |
[11] | 高照山. 赤峰达来诺尔水化学主要特征及其形成[J]. 地理科学, 1989, 9(2): 163-172,196. |
[12] | 邓伟. 长江河源区水化学基本特征的研究[J]. 地理科学, 1988, 8(4): 363-370,396. |
[13] | 刘亚传. 石羊河流域水文化学特征分布规律及演变[J]. 地理科学, 1986, 6(4): 348-356. |
|