地理科学 ›› 2018, Vol. 38 ›› Issue (5): 800-807.doi: 10.13249/j.cnki.sgs.2018.05.018
收稿日期:
2017-04-10
修回日期:
2017-07-20
出版日期:
2018-05-10
发布日期:
2018-05-10
作者简介:
作者简介:王纯(1982-),女,湖南益阳人,博士,主要从事湿地元素生物地球化学循环研究。E-mail:
基金资助:
Chun Wang1(), Xingtu Liu1(
), Chuan Tong2,3
Received:
2017-04-10
Revised:
2017-07-20
Online:
2018-05-10
Published:
2018-05-10
Supported by:
摘要:
从土壤有机碳含量和活性组分出发,分析了湿地土壤碳库组分对盐度变化的响应特征。同时分析了土壤有机碳3种稳定机制,评述了土壤碳稳定性与盐分中主要离子的博弈。并在基于研究滨海湿地碳固定与稳定的基础上,提出了土壤碳稳定与营养元素循环的相互作用机制研究、土壤碳稳定与微生物及酶学机制的关系研究、借助稳定同位素技术多要素多过程耦合研究等科学问题展望。以期为了解未来中国海平面上升背景下湿地碳截获潜力的可能演变趋势及其应对策略,为发展和完善中国湿地土壤碳循环理论奠定科学基础。
中图分类号:
王纯, 刘兴土, 仝川. 盐度对滨海湿地土壤碳库组分及稳定性的影响[J]. 地理科学, 2018, 38(5): 800-807.
Chun Wang, Xingtu Liu, Chuan Tong. Effects of Salinity on Characteristics and Stability of Soil Carbon Pool in Coastal Wetland[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(5): 800-807.
表1
SOC稳定机制研究现状总结"
土地类型 | 研究对象 | SOC稳定机制 | 参考 文献 | ||
---|---|---|---|---|---|
分子生物学稳定 | 团聚体物理稳定 | 化学结合稳定 | |||
农田(美国) | 干湿交替 | 干湿交替初期大团聚体周转快,SOC稳定性差,后期固碳增加 | [46] | ||
水稻田(中国) | 疏水性有机质 | 木质素和脂类等疏水性SOC被选择性保护 | 氧化铁含量高和土壤pH较低的水稻土保护疏水性SOC | [47] | |
沙土(澳大利亚) | 作物残茬vs 土壤pH | 分子结构稳定顺序:烷基碳>芳基碳>氧烷基碳 | [48] | ||
无草休闲地 (法国) | 钙盐土壤结构vs钾盐土壤结构 | 钙盐样地大团聚稳定性高,短时间以团聚体固碳为主 | 长时间尺度钙盐样地主要以黏粒和粉砂固碳为主 | [49] | |
亚北极草地 (冰岛) | 土壤增温 | 增温时分子结构稳定不是固碳的主要机理 | 增温降低团聚体稳定性,导致团聚体保护的SOC大量亏损 | [50] | |
黄土丘陵区 (中国) | 退耕还林 | 53~250 μm粒级土壤微团聚体物理保护SOC组分的比例较小 | 退耕还林后主要通过粉砂和黏粒内矿物表面吸附固定SOC | [51] | |
森林土壤 (西班牙) | 生物炭 | 生物炭、层状硅酸盐和铁铝氧化物等在黏粒尺度固碳 | [52] | ||
高山和亚高山土 壤(比利牛斯山) | 土壤矿物 | 弱晶质氧化铁和水铁矿固定SOC较硅铝矿物更重要 | [53] | ||
森林土壤 (中国) | 不同树种 | 阔叶林较马尾松林低烷基碳,高氧烷基碳,稳定性差 | [54] | ||
黏土和沙土 (捷克) | 蚯蚓 | 蚯蚓处理下SOC的芳香族成分和酚类含量无显著变化 | 蚯蚓吸收有机残体进入土壤产生新的团聚体而保护SOC | [55] | |
河口湿地 (中国) | 时间尺度和土地利用变化 | 旱地农田土壤微团聚体闭蓄SOC与输入的植物残茬有关 | 未开垦的湿地SOC主要被水合氧化铁和铝稳定 | [56] |
[1] | Lal R.Greenhouse effect on world soils[M]. In: Lal R (ed). Encyclopedia of Soil Science. New York: Marcel Dekker, 2006:782-786. |
[2] |
Quegan S, Beer C, Shvidenko A et al. Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and dynamic global vegetation models[J]. Global Change Biology, 2011, 17(1): 351-365.
doi: 10.1111/j.1365-2486.2010.02275.x |
[3] |
Kindler R, Siemens J, Kaiser K et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance[J]. Global Change Biology, 2011, 17(2): 1167-1185.
doi: 10.1111/j.1365-2486.2010.02282.x |
[4] |
Whiting G J, Chanton J P.Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration[J]. Tellus B, 2001, 53(5): 521-528.
doi: 10.1034/j.1600-0889.2001.530501.x |
[5] |
Kayranli B, Scholz M, Mustafa A et al. Carbon storage and fluxes within freshwater wetlands: A critical review[J]. Wetlands, 2010, 30(1): 111-124.
doi: 10.1007/s13157-009-0003-4 |
[6] |
Bianchi T S, Allison M A.Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences, 2009,106(20):8085-8092.
doi: 10.1073/pnas.0812878106 pmid: 19435849 |
[7] | Meehl G A, Stocker T F, Collins W D et al. Global climate projections climate Change 2007: The Physical Science Basis[M].In: Solomon S et al (eds). Cambridge, UK, and New York : Cambridge University Press,2007:747-845. |
[8] | IPCC. Changes in atmospheric constituents and in radioactive forcing. In: Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press,2007. |
[9] |
Neubauer S C.Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology[J]. Estuaries and Coasts, 2013, 36(3):491-507.
doi: 10.1007/s12237-011-9455-x |
[10] |
Chambers L G, Reddy K R, Osborne T Z.Short-term response of carbon cycling to salinity pulses in a freshwater wetland[J]. Soil Science Society of America Journal, 2011, 75(5):2000-2007.
doi: 10.2136/sssaj2011.0026 |
[11] |
Neubauer S C, Franklin R B, Berrier D J.Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon[J]. Biogeosciences, 2013, 10(12):8171-8183.
doi: 10.5194/bg-10-8171-2013 |
[12] |
Morrissey E M, Gillespie J L, Morina J C et al. Salinity affects microbial activity and soil organic matter content in tidal wetlands[J]. Global Change Biology, 2014, 20(4): 1351-1362.
doi: 10.1111/gcb.12431 pmid: 24307658 |
[13] |
Wang C, Tong C, Chambers L G et al. Identifying the salinity thresholds that impact greenhouse gas production in subtropical tidal freshwater marsh soils[J]. Wetlands, 2017:1-3.
doi: 10.1007/s13157-017-0890-8 |
[14] |
Lützow M V, Kögel-Knabner I, Ekschmitt K et al. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39(9): 2183-2207.
doi: 10.1016/j.soilbio.2007.03.007 |
[15] |
John B, Yamashita T, Ludwig B et al. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use[J]. Geoderma, 2005,128(1-2): 63-79.
doi: 10.1016/j.geoderma.2004.12.013 |
[16] |
Van Ryckegem G, Verbeken A.Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium)[J]. Nova Hedwigia, 2005, 80(1-2):173-197.
doi: 10.1127/0029-5035/2005/0080-0173 |
[17] |
Chambers L G, Guevara R, Boyer J N et al. Effects of salinity and inundation on microbial community structure and function in a mangrove peat soi[J]. Wetlands, 2016, 36(2):361-371.
doi: 10.1007/s13157-016-0745-8 |
[18] |
Edmonds J W, Weston N B, Joye S B et al. Microbial community response to seawater amendment in low-salinity tidal sediments[J]. Microbial Ecology, 2009, 58(3): 558-568.
doi: 10.1007/s00248-009-9556-2 pmid: 19629578 |
[19] |
Weston N B, Vile M A, Neubauer S C et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soil[J]. Biogeochemistry, 2011, 102(1):135-151.
doi: 10.1007/s10533-010-9427-4 |
[20] |
Portnoy J W, Giblin A E.Biogeochemical effects of seawater restoration to diked salt marshes[J]. Ecological Applications, 1997, 7(3):1054-1063.
doi: 10.2307/2269455 |
[21] |
Chambers L G, Osborne T Z, Reddy K R.Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient: A laboratory experiment[J]. Biogeochemistry, 2013, 115(1):363-383.
doi: 10.1007/s10533-013-9841-5 |
[22] |
Thottathil S D, Balachandran K K, Jayalakshmy K V et al. Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary[J]. Estuarine, Coastal and Shelf Science, 2008, 78(4): 665-673.
doi: 10.1016/j.ecss.2008.02.002 |
[23] |
Kaštovská E, Šantrůčková H.Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions[J]. Plant and Soil, 2007, 300(1-2): 61-69.
doi: 10.1007/s11104-007-9388-0 |
[24] | 张林海, 曾从盛, 仝川. 闽江河口湿地芦苇和互花米草生物量季节动态研究[J]. 亚热带资源与环境学报, 2008, 3(2): 25-33. |
[Zhang Linhai, Zeng Congsheng, Tong Chuan.Study on biomass dynamics of Phragmites australis and Spartina alterniflora in the wetlands of Min jiang River Estuary. Journal of Subtropical Resources and Environment, 2008, 3(2): 25-33.] | |
[25] | 张耀鸿, 张富存, 周晓冬, 等. 互花米草对苏北滨海湿地表土有机碳更新的影响[J]. 中国环境科学, 2011, 31(2): 271-276. |
[Zhang Yaohong, Zhang Fucun, Zhou Xiaodong et al. Effects of plant invasion along a Spartina alterniflora chronosequence on organic carbon dynamics in coastal wetland in north Jiangsu. China Environmental Science, 2011, 31(2):271-276.] | |
[26] |
Cheng X, Chen J, Luo Y et al. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes[J]. Geoderma, 2008, 145(3): 177-184.
doi: 10.1016/j.geoderma.2008.02.013 |
[27] |
Sitch S, Smith B, Prentice I C et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161-185.
doi: 10.1046/j.1365-2486.2003.00569.x |
[28] |
Denef K, Six J, Merckx R et al. Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy[J]. Soil Science Society of America Journal, 2004, 68(6):1935-1944.
doi: 10.2136/sssaj2004.1935 |
[29] |
Anderson T H, Domsch K H.Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22(2): 251-255.
doi: 10.1016/0038-0717(90)90094-G |
[30] |
Jia G M, Liu X.Soil microbial biomass and metabolic quotient across a gradient of the duration of annually cyclic drainage of hillslope riparian zone in the three gorges reservoir area[J]. Ecological Engineering, 2017, 99: 366-373.
doi: 10.1016/j.ecoleng.2016.11.063 |
[31] |
Kiehn W M, Mendelssohn I A, White J R.Biogeochemical recovery of oligohaline wetland soils experiencing a salinity pulse[J]. Soil Science Society of America Journal, 2013, 77(6): 2205-2215.
doi: 10.2136/sssaj2013.05.0202 |
[32] |
Weston N B, Giblin A E, Banta G T et al. The effects of varying salinity on ammonium exchange in estuarine sediments of the Parker River, Massachusetts[J]. Estuaries and Coasts, 2010, 33(4): 985-1003.
doi: 10.1007/s12237-010-9282-5 |
[33] | Thurman E M.Organic geochemistry of natural waters (Vol. 2)[M]. New York: Springer Science and Business Media, 2012. |
[34] |
Mahajan G R, Manjunath B L, Latare A M et al. Microbial and enzyme activities and carbon stock in unique coastal acid saline soils of Goa[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2015, 86(4):961-971.
doi: 10.1007/s40011-015-0552-7 |
[35] |
Yan N, Marschner P.Response of soil respiration and microbial biomass to changing EC in saline soils[J]. Soil Biology and Biochemistry, 2013, 65: 322-328.
doi: 10.1016/j.soilbio.2013.06.008 |
[36] | 万忠梅, 郭岳, 郭跃东. 土地利用对湿地土壤活性有机碳的影响研究进展[J]. 生态环境学报, 2011, 20(3): 567-570. |
[Wan Zhongmei, Guo Yue, Guo Yuedong.Research progress on influence of land use on wetland soil active organic carbon. Ecology and Environmental Sciences, 2011, 20(3): 567-570.] | |
[37] |
Tian J, Fan M, Guo J et al. Effects of land use intensity on dissolved organic carbon properties and microbial community structure[J]. European Journal Soil Biology, 2012, 52:67-72
doi: 10.1016/j.ejsobi.2012.07.002 |
[38] |
Chow A T, Tanji K K, Gao S.Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology and Biochemistry, 2006, 38(3): 477-488.
doi: 10.1016/j.soilbio.2005.06.005 |
[39] |
吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9):1006-1017.
doi: 10.11867/j.issn.1001-8166.2015.09.1006 |
[Wu Jinshui, Ge Tida, Zhu Zhenke.Discussion on the key microbial process of carbon cycle and stoichiometric regulation mechanisms in paddy soils. Advances in Earth Science, 2015, 30(9):1006-1017.]
doi: 10.11867/j.issn.1001-8166.2015.09.1006 |
|
[40] |
Wang G, Guan D, Zhang Q et al. Distribution of dissolved organic carbon and KMnO4-oxidizable carbon along the low-to-high intertidal gradient in a mangrove forest[J]. Journal of Soils and Sediments, 2015, 15(11):2199-2209.
doi: 10.1007/s11368-015-1150-2 |
[41] |
Shrestha R K, Ladha J K, Gami S K.Total and organic soil carbon in cropping systems of Nepal[J]. Nutrient Cycling in Agroecosystems, 2006, 75(1): 257-269.
doi: 10.1007/s10705-006-9032-z |
[42] |
Zhang M, Zhang X, Liang W et al. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China[J]. Pedosphere, 2011, 21(5):615-620.
doi: 10.1016/S1002-0160(11)60163-X |
[43] | 高灯州, 曾从盛, 章文龙, 等. 闽江口湿地土壤有机碳及其活性组分沿水文梯度分布特征[J]. 水土保持学报, 2014, 28(6): 216-221. |
[Gao Dengzhou, Zeng Congsheng, Zhang Wenlong et al. Spatial distributions of soil organic carbon and active composition along a hydrologic gradient in Min River estuarine wetland. Journal of soil and water conservation, 2014, 28(6): 216-221 | |
[44] |
Sebastian R, Chacko J.Distribution of organic carbon in tropical mangrove sediments (Cochin, India)[J]. International Journal Environmental Studies, 2006, 63(3):303-311.
doi: 10.1080/00207230600720498 |
[45] |
Ren H, Chen H, Li Z A.Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China[J]. Plant and Soil, 2010, 327(1):279-291.
doi: 10.1007/s11104-009-0053-7 |
[46] |
Denef K, Six J, Paustian K et al. Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles[J]. Soil Biology and Biochemistry, 2001, 33(15): 2145-2153.
doi: 10.1016/S0038-0717(01)00153-5 |
[47] |
Song X Y, Spaccini R, Pan G et al. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils[J]. Science of the Total Environment, 2013, 458:319-330.
doi: 10.1016/j.scitotenv.2013.04.052 pmid: 23669578 |
[48] |
Wang X, Butterly C R, Baldock et al. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH[J]. Science of the Total Environment, 2017, 587:502-509.
doi: 10.1016/j.scitotenv.2017.02.199 |
[49] |
Paradelo R, van Oort F, Barré P et al. Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures[J]. Geoderma, 2016, 275:48-54.
doi: 10.1016/j.geoderma.2016.04.009 |
[50] |
Poeplau C, Kätterer T, Leblans N I et al. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland[J]. Global Change Biology, 2016, 23(3):1316-1327.
doi: 10.1111/gcb.13491 pmid: 27591579 |
[51] |
Han X, Zhao F, Tong X et al. Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation[J]. Catena, 2017, 150:317-327.
doi: 10.1016/j.catena.2016.11.027 |
[52] |
Fernández-Ugalde O, Gartzia-Bengoetxea N, Arostegi J et al. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area[J]. Science of the Total Environment, 2017, 587:204-213.
doi: 10.1016/j.scitotenv.2017.02.121 pmid: 28237467 |
[53] |
Jiménez J J, Villar L.Mineral controls on soil organic C stabilization in alpine and subalpine soils in the Central Pyrenees: Insights from wet oxidation methods, mineral dissolution treatment and radiocarbon dating[J]. Catena, 2017, 149(1):363-373.
doi: 10.1016/j.catena.2016.10.011 |
[54] |
Wang H, Liu S R, Mo J M et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China[J]. Ecological Research, 2010, 25(6):1071-1079.
doi: 10.1007/s11284-010-0730-2 |
[55] |
Angst Š, Mueller C W, Cajthaml T et al. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter[J]. Geoderma, 2017, 289:29-35.
doi: 10.1016/j.geoderma.2016.11.017 |
[56] |
Cui J, Li Z, Liu Z et al. Physical and chemical stabilization of soil organic carbon along a 500-year cultived soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects[J]. Agriculture, Ecosystems and Environment, 2014, 196:10-20.
doi: 10.1016/j.agee.2014.06.013 |
[57] |
Gleixner G, Poirier N, Bol R et al. Molecular dynamics of organic matter in a cultivated soil[J]. Organic Geochemistry, 2002, 33(3): 357-366.
doi: 10.1016/S0146-6380(01)00166-8 |
[58] |
Knicker H.Stabilization of N-compounds in soil and organic-matter-rich sediments--what is the difference?[J] Marine Chemistry, 2004, 92(1):167-195.
doi: 10.1016/j.marchem.2004.06.025 |
[59] |
Wattel-Koekkoek E J W, Buurman P, Van Der Plicht J et al. Mean residence time of soil organic matter associated with kaolinite and smectite[J]. European Journal of Soil Science, 2003, 54(2):269-278.
doi: 10.1046/j.1365-2389.2003.00512.x |
[60] |
Kleber M, Mikutta R, Torn M S et al. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J]. European Journal of Soil Science, 2005, 56(6):717-725.
doi: 10.1111/j.1365-2389.2005.00706.x |
[61] |
Han L, Sun K, Jin J et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94:107-121.
doi: 10.1016/j.soilbio.2015.11.023 |
[62] |
Six J, Conant R T, Paul E A et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176.
doi: 10.1023/A:1016125726789 |
[63] |
Lützow M V, Kögel-Knabner I, Ekschmitt K et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review[J]. European Journal of Soil Science, 2006, 57(4):426-445.
doi: 10.1111/j.1365-2389.2006.00809.x |
[64] |
Kang Y, Zhang Z, Shi H et al. Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores[J]. Nanoscale, 2014, 6(18), 10666-10672.
doi: 10.1039/c4nr01383b pmid: 25089590 |
[65] | Lim C, Dudev T. Potassium versus sodium selectivity in monovalent ion channel selectivity filters[M]//In the alkali metal ions: Their role for life. Springer International Publishing, 2016: 325-347. |
[66] |
Zhang X, Huang C, Jin X.Influence of K+ and Na+ ions on the degradation of wet-spun alginate fibers for tissue engineering[J]. Journal of Applied Polymer Science, 2017, 134(2):1-8.
doi: 10.1002/app.44396 |
[67] |
Bronick C J, Lal R.Soil structure and management: a review[J]. Geoderma, 2005, 124(1): 3-22.
doi: 10.1016/j.geoderma.2004.03.005 |
[68] |
Zhang S, Wang R, Yang X et al. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol[J]. Scientific Reports, 2016, 6:1-11.
doi: 10.1038/srep39107 pmid: 27958366 |
[69] |
Asano M, Wagai R.Evidence of aggregate hierarchy at micro-to submicron scales in an allophanic Andisol[J]. Geoderma, 2014, 216: 62-74.
doi: 10.1016/j.geoderma.2013.10.005 |
[70] |
Zhang X C, Norton L D.Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils[J]. Journal of Hydrology, 2002, 260(1):194-205.
doi: 10.1016/S0022-1694(01)00612-6 |
[71] |
Mavi M S, Sanderman J, Chittleborough D J et al. Sorption of dissolved organic matter in salt-affected soils: Effect of salinity, sodicity and texture[J]. Science of the Total Environment, 2012, 435: 337-344.
doi: 10.1016/j.scitotenv.2012.07.009 pmid: 22863809 |
[72] |
Amezketa E.Soil aggregate stability: a review[J]. Journal of Sustainable Agriculture, 1999, 14(2-3): 83-151.
doi: 10.1300/J064v14n02_08 |
[73] |
Wang R, Dungait J A, Buss H L et al. Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland[J]. Science of the Total Environment, 2017, 575:564-572.
doi: 10.1016/j.scitotenv.2016.09.018 pmid: 27613671 |
[74] |
Sinsabaugh R L, Manzoni S, Moorhead D L et al. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling[J]. Ecology Letters, 2013, 16(7): 930-939.
doi: 10.1111/ele.12113 pmid: 23627730 |
[75] |
Bandick A K, Dick R P.Field management effects on soil enzyme activities[J]. Soil biology and biochemistry, 1999, 31(11):1471-1479.
doi: 10.1016/S0038-0717(99)00051-6 |
[76] |
Schmidt M W, Torn M S, Abiven S et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56.
doi: 10.1038/nature10386 pmid: 21979045 |
[77] |
Ström L, Christensen T R.Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland[J]. Soil Biology and Biochemistry, 2007, 39(7): 1689-1698.
doi: 10.1016/j.soilbio.2007.01.019 |
[1] | 闫晓露,钟敬秋,韩增林,孙才志,刘淼. 近40年辽东湾北部围垦区内外滨海湿地景观演替特征及驱动力分析[J]. 地理科学, 2019, 39(7): 1155-1165. |
[2] | 赵全升, 胡舒娅, 王新民, 叶思源, 丁喜桂. 辽河三角洲滨海湿地含水层水文地质参数获取的试验研究[J]. 地理科学, 2014, 34(12): 1533-1537. |
[3] | 王永丽, 于君宝, 董洪芳, 栗云召, 周迪, 付玉芹, 韩广轩, 毛培利. 黄河三角洲滨海湿地的景观格局空间演变分析[J]. 地理科学, 2012, 32(6): 717-724. |
|