地理科学 ›› 2018, Vol. 38 ›› Issue (7): 997-1011.doi: 10.13249/j.cnki.sgs.2018.07.001
• • 下一篇
何兴元1,2(), 任春颖1, 陈琳1,2, 王宗明1, 郑海峰1
收稿日期:
2018-06-06
修回日期:
2018-07-19
出版日期:
2018-07-20
发布日期:
2018-07-20
作者简介:
作者简介:何兴元(1962-),男,辽宁义县人,研究员,博士生导师,主要从事森林生态、城市森林研究。E-mail:
基金资助:
Xingyuan He1,2(), Chunying Ren1, Lin Chen1,2, Zongming Wang1, Haifeng Zheng1
Received:
2018-06-06
Revised:
2018-07-19
Online:
2018-07-20
Published:
2018-07-20
Supported by:
摘要:
森林是陆地生态系统的主体,森林生态系统监测技术是实现森林可持续利用与全球变化研究的重要支撑与信息保障。从4个方面概述了遥感技术在森林生态系统监测中的应用研究进展:森林遥感分类及变化监测、森林植被参数遥感反演、森林蓄积量与生物量遥感估算、森林干扰遥感监测等。结合遥感技术的发展,总结了森林生态系统监测中使用的多源遥感数据和各类模型,提出集成地面调查数据、高分地-空雷达扫描监测技术,以及多源光学遥感建模技术和生态系统过程模型,构建多维度、多尺度、高时间密度的森林生态系统监测平台的研究展望。
中图分类号:
何兴元, 任春颖, 陈琳, 王宗明, 郑海峰. 森林生态系统遥感监测技术研究进展[J]. 地理科学, 2018, 38(7): 997-1011.
Xingyuan He, Chunying Ren, Lin Chen, Zongming Wang, Haifeng Zheng. The Progress of Forest Ecosystems Monitoring with Remote Sensing Techniques[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(7): 997-1011.
[50] | 陈利, 林辉, 孙华, 等. 杉木人工林平均树高遥感反演模型研究[J]. 西南林业大学学报, 2012, 32(2): 26-34. |
[Chen Li, Lin Hui, Sun Hua et al. Research on average tree height inversion model of Cunninghamia lanceolata plantation. Journal of Southwest Forestry University, 2012, 32(2): 26-34.] | |
[51] |
张巍巍, 冯仲科, 汪笑安, 等. 基于TM 影像的林木参数提取和树高估测[J]. 中南林业科技大学学报, 2013, 33(9): 27-31.
doi: 10.3969/j.issn.1673-923X.2013.09.007 |
[Zhang Weiwei, Feng Zhongke, Wang Xiaoan et al. Trees parameter extraction and tree height estimation based on TM images. Journal of Central South University of Forestry & Technology, 2013, 33(9): 27-31.]
doi: 10.3969/j.issn.1673-923X.2013.09.007 |
|
[1] |
贾明明, 任春颖, 刘殿伟, 等. 基于环境星与MODIS时序数据的面向对象森林植被分类[J]. 生态学报, 2014, 34(24): 7167-7174.
doi: 10.5846/stxb201310112438 |
[Jia Mingming, Ren Chunying, Liu Dianwei et al. Object-oriented forest classification based on combination of HJ-1 CCD and MODIS-NDVI data. Acta Ecologica Sinica, 2014, 34(24): 7167-7174.]
doi: 10.5846/stxb201310112438 |
|
[52] |
鲁林, 周小成, 余治忠, 等.随机森林算法在机载LiDAR数据林分平均树高估算中的应用研究[J]. 地球信息科学学报, 2016, 18(8): 1133-1140.
doi: 10.3724/SP.J.1047.2016.01133 |
[Lu Lin, Zhou Xiaocheng, Yu Zhizhong et al. Plot-level forest height inversion using airborne LiDAR data based on the random forest. Journal of Geo-Information Science, 2016, 18(8): 1133-1140.]
doi: 10.3724/SP.J.1047.2016.01133 |
|
[2] | 汤旭光. 基于激光雷达与多光谱遥感数据的森林地上生物量反演研究[D]. 长春:中国科学院东北地理与农业生态研究所. 2013. |
[Tang Xuguang.Estimation of forest aboveground biomass by integrating ICESat/GLAS waveform and TM Data. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences,2013.] | |
[53] |
Tesfamichael S G, Ahmed F B, Van Aardt J A N. Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations[J]. International Journal of Remote Sensing, 2010, 31: 2925-2940.
doi: 10.1080/01431160903144086 |
[54] | Bienert A, Scheller S, Keane Eet al. Tree detection and diameter estimations by analysis of forest terrestrial laser scanner point clouds[J]. In:ISPRS Workshop on Laser Scanning 2007 and Silvilaser 2007, Espoo. Sept 12-14, 2007. |
[55] |
吴迪, 范文义. 激光雷达协同多角度光学遥感数据反演树高[J]. 北京林业大学学报, 2014, 36(4): 8-15.
doi: 10.13332/j.cnki.jbfu.2014.04.006 |
[Wu Di, Fan Wenyi.Forest canopy height estimation using LiDAR and optical multi-angler data. Journal of Beijing Forestry University, 2014, 36(4): 8-15.]
doi: 10.13332/j.cnki.jbfu.2014.04.006 |
|
[3] |
Woodwell G M, Whittaker R H, Reiners W A et al. The biota and the world carbon budget[J]. Science, 1978, 199: 141-146.
doi: 10.1126/science.199.4325.141 pmid: 17812932 |
[4] | 徐阳. 全球治理森林再平衡——联合国森林论坛第十一届会议决定未来15年国际森林安排总体框架[J]. 绿色中国, 2015, 13: 8-23. |
[Xu Yang.Rebalance of global forest management——The 11th Session of the United Nations Forum on Forests decided global forest management overall framework in next 15 years. Green China, 2015, 13: 8-23.] | |
[5] | 高祥. 森林资源调查监测信息化技术方法研究[D]. 北京:北京林业大学, 2015. |
[56] |
Chopping Mark, Nolin Anne, Moisen Gretchen G et al. Forest canopy height from the Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar[J]. Remote Sensing of Environment, 2009, 113: 2172-2185.
doi: 10.1016/j.rse.2009.05.017 |
[57] |
Pflugmacher Dirk, Cohen Warren B, Kennedy Robert E.Using Landsat-derived disturbance history (1972-2010) to predict current forest structure[J]. Remote Sensing of Environment, 2012, 122: 146-165.
doi: 10.1016/j.rse.2011.09.025 |
[5] | [Gao Xiang.Resaerch on informantion approaches for forest resources inventory and monitoring. Beijing: Beijing Forestry University, 2015.] |
[6] | 吴迪. 基于GLAS和MISR数据的森林冠层高度和地上生物量遥感估算研究[D]. 哈尔滨:东北林业大学,2015. |
[58] |
Sun G, Ranson K J, Kimes D S et al. Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data[J]. Remote Sensing of Environment, 2008, 112: 107-117.
doi: 10.1016/j.rse.2006.09.036 |
[59] |
Lefsky Michael A, Cohen Warren B, Harding David J et al. Lidar remote sensing of above-ground biomass in three biomes[J]. Global Ecology and Biogeography, 2002, 11:393-399.
doi: 10.1046/j.1466-822x.2002.00303.x |
[6] | [Wu Di.Forest canopy height and aboveground biomass estimation based on GLAS and MISR data. Harbin: Northeast Forestry University, 2015.] |
[7] | 李世明, 王志慧, 韩学文, 等. 森林资源变化遥感监测技术研究进展[J]. 北京林业大学学报, 2011, 33(3): 132-138. |
[Li Shiming, Wang Zhihui, Han Xuewen et al. Overview of forest resources change detection methods using remote sensing techniques. Journal of Beijing Forestry University, 2011, 33(3): 132-138.] | |
[8] | 刘安兴. 森林资源监测技术发展趋势[J]. 浙江林业科技, 2005, 25(4):70-76. |
[60] |
王佳, 杨慧乔, 冯仲科, 等. 利用轻小型飞机遥感数据建立人工林特征参数模型[J]. 农业工程学报, 2013, 29(8): 164-170.
doi: 10.3969/j.issn.1002-6819.2013.08.019 |
[Wang Jia, Yang Huiqiao, Feng Zhongke et al. Model of characteristic parameter for forest plantation with data obtained by light small aerial remote sensing system. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 164-170.]
doi: 10.3969/j.issn.1002-6819.2013.08.019 |
|
[8] | [Liu Anxing.Trends and progress of forest resources monitoring technique. Journal of Zhejiang Forestry Science and Technology, 2005, 25(4):70-76.] |
[9] | 徐萍, 徐天蜀. 森林资源动态监测技术综述[J]. 云南大学学报(自然科学版), 2007, 29(S1): 251-254. |
[61] | 韦雪花. 轻小型航空遥感森林几何参数提取研究[D]. 北京:北京林业大学. 2013. |
[Wei Xuehua.Research of forestry geometrical parameter extraction with light and small airborne remote sensing system. Beijing: Beijing Forestry University. 2013.] | |
[9] | [Xu Ping, Xu Tianshu.Technologies of forest resources dynamic monito ring. Journal of Yunnan University, 2007, 29(S1): 251-254.] |
[10] |
罗朝沁, 林辉, 孙华, 等. 基于MODIS影像大尺度森林资源信息提取方法研究[J]. 中南林业科技大学学报, 2015, 35(11): 21-26+42.
doi: 10.14067/j.cnki.1673-923x.2015.11.005 |
[62] |
Ashworth Andrew, Evans David L, Cooke William H et al. Predicting southeastern forest canopy heights and fire fuel models using GLAS data[J]. Photogrammetric Engineering and Remote Sensing, 2010, 76: 915-922.
doi: 10.14358/PERS.76.8.915 |
[63] | Lefsky Michael A.A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system[J]. Geophysical Research Letters, 2010, 37: L15401. |
[64] | 岳彩荣, 肖虹雁, 曹霸. 基于PolInSAR森林高度反演研究[J]. 西南林业大学学报, 2016, 36(3): 137-143. |
[Yue Cairong, Xiao Hongyan, Cao Ba.Forest height inversion based on Polarimetric Interferometry SAR. Journal of Southwest Forestry University, 2016, 36(3): 137-143.] | |
[10] |
[Luo Chaoqin, Lin Hui, Sun Huaet al. Based on MODIS image large-scale forest resources information extraction method. Journal of Central South University of Forestry & Technology, 2015, 35(11): 21-26+42.]
doi: 10.14067/j.cnki.1673-923x.2015.11.005 |
[11] |
郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 59(6): 459-478.
doi: 10.1360/972013-592 |
[65] | 孙晗伟, 曾涛, 杨健, 等. SAR残余相位误差对森林高度反演影响的全链路模拟与分析[J]. 武汉大学学报(信息科学版), 2015, 40(2): 153-158. |
[Sun Hanwei, Zeng Tao, Yang Jian et al. Simulation and analysis of SAR residual phase error on forest height inversion. Geomatics and Information Science of Wuhan University, 2015, 40(2): 153-158.] | |
[11] |
[Guo Qinghua, Liu Jin, Tao Shengli et al. Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling. Chinese Science Bulletin, 2014, 59(6): 459-478. ]
doi: 10.1360/972013-592 |
[12] |
Dai Ting, Wiegert Richard G.Ramet population dynamics and net aerial primary productivity of spartina alterniflora[J]. Ecology, 1996, 77: 276-288.
doi: 10.2307/2265677 |
[66] | Yamada Hiroyoshi, Onoda Hitoshi, Yamaguchi Yoshio.On scattering model decomposition with Pol-In SAR data[J]. European Conference on Synthetic Aperture Radar, 2008, 34: 1-4. |
[67] | 罗环敏. 基于极化干涉SAR的森林结构信息提取模型与方法[D]. 成都:电子科技大学. 2011. |
[13] |
Corona Piermaria.Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems[J]. Environmental Research, 2016, 144: 8-14.
doi: 10.1016/j.envres.2015.10.017 pmid: 26514075 |
[14] |
高广磊, 信忠保, 丁国栋, 等. 基于遥感技术的森林健康研究综述[J]. 生态学报, 2013, 33(6): 1675-1689.
doi: 10.5846/stxb201112011838 |
[67] | [Luo Huanmin.Models and methods of extracting forest structure information by Polarimetric SAR interferometry. Chengdu: University of Electronic Science and Technology of China,2011.] |
[68] |
杨坤, 赵艳玲, 张建勇, 等. 利用无人机高分辨率影像进行树木高度提取[J]. 北京林业大学学报, 2017, 39(8): 17-23.
doi: 10.13332/j.1000--1522.20160428 |
[14] |
[Gao Guanglei, Xin Zhongbao, Ding Guodong et al. Forest health studies based on remote sensing: a review. Acta Ecologica Sinica, 2013, 33(6): 1675-1689.]
doi: 10.5846/stxb201112011838 |
[15] |
Sun Xiaoyan, Du Huaqiang, Han Ning et al. Synergistic use of Landsat TM and SPOT5 imagery for object-based forest classification[J]. Journal of Applied Remote Sensing, 2014, 8: 801-807.
doi: 10.1117/1.JRS.8.083550 |
[68] |
[Yang Kun, Zhao Yanling, Zhang Jianyong et al. Tree height extraction using high-resolution imagery acquired from an unmanned aerial vehicle (UAV). Journal of Beijing Forestry University, 2017, 39(8): 17-23.]
doi: 10.13332/j.1000--1522.20160428 |
[69] |
Zarco-Tejada P J, Diaz-Varela R, Angileri Vet al. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods[J]. European Journal of Agronomy, 2014, 55: 89-99.
doi: 10.1016/j.eja.2014.01.004 |
[16] |
郝泷, 陈永富, 刘华, 等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
doi: 10.11873/j.issn.1004-0323.2017.2.0386 |
[Hao Shuang, Chen Yongfu, Liuhua et al. Object-oriented forest classification of Linzhi County based on CART decision tree with texture information. Remote Sensing Technology and Application, 2017, 32(2): 386-394.]
doi: 10.11873/j.issn.1004-0323.2017.2.0386 |
|
[17] | 张増祥. 中国土地覆盖遥感监测[M]. 北京:星球地图出版社,2010. |
[Zhang Zengxiang.Remote sensing monitoring of landcover in China. Beijing: Planet Map Press,2010.] | |
[70] |
Chen J M, Black T A.Defining leaf area index for non-flat leaves[J]. Plant Cell and Environment, 1992, 15: 421-429.
doi: 10.1111/j.1365-3040.1992.tb00992.x |
[71] | 黄玫, 季劲钧. 中国区域植被叶面积指数时空分布机理模型模拟与遥感反演比较[J]. 生态学报, 2010, 30(11): 3057-3064. |
[18] | 曾庆伟, 武红敢. 基于高光谱遥感技术的森林树种识别研究进展[J]. 林业资源管理, 2009(5): 109-114. |
[Zeng Qingwei, Wu Honggan.Development of hyperspectral remote sensing application in forest species identification. Forest Resources Management, 2009(5): 109-114. ] | |
[71] | [Huang Mei, Ji Jinjun.The spatial-temporal distribution of leaf area index in China: a comparisonbetween ecosystem modeling and remote sensing reversion. Acta Ecologica Sinica, 2010, 30(11): 3057-3064.] |
[72] |
Swatantran Anu, Dubayah Ralph, Roberts Dar et al. Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion[J]. Remote Sensing of Environment, 2011, 115: 2917-2930.
doi: 10.1016/j.rse.2010.08.027 |
[19] |
Fassnacht Fabian Ewald, Latifi Hooman, Sterenczak Krzysztof et al. Review of studies on tree species classification from remotely sensed data[J]. Remote Sensing of Environment, 2016, 186: 64-87.
doi: 10.1016/j.rse.2016.08.013 |
[20] | 张继平, 刘春兰, 郝海广, 等. 面向对象的ALOS高分辨率遥感影像亚热带森林遥感分类研究[J]. 南方林业科学, 2015, 43(1): 39-42+55. |
[73] | 邹杰. 阎广建. 森林冠层地面叶面积指数光学测量方法研究进展[J]. 应用生态学报, 2010, 21(11): 2971-2979. |
[Zou Jie, Yan Guangjian.Optical methods for in situ measuring leaf area index of forest canopy: A review. Chinese Journal of Applied Ecology, 2010, 21(11): 2971-2979.] | |
[20] | [Zhang Jiping, Liu Chunlan, Hao Haiguanget al. Object-oriented classification of subtropical forest based on ALOS high resolution remote rensing image. South China Forestry Science, 2015, 43(1): 39-42+55. ] |
[21] | 吴雪琼, 覃先林, 周汝良, 等. 森林覆盖变化遥感监测方法研究进展[J]. 林业资源管理, 2010(4): 82-87. |
[74] |
Song C.Optical remote sensing of forest leaf area index and biomass[J]. Progress in Physical Geography, 2013, 37(1): 98-113.
doi: 10.1177/0309133312471367 |
[75] |
Korhonen Lauri, Hadi, Packalen Petteri et al. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index[J]. Remote Sensing of Environment, 2017, 195: 259-274.
doi: 10.1016/j.rse.2017.03.021 |
[21] | [Wu Xueqiong, Qin Xianlin, Zhou Ruliang et al. Progress of study on forest cover change detection by using remote sensing technique. Forest Resources Management, 2010(4): 82-87.] |
[22] |
Blaschke T.Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65: 2-16.
doi: 10.1016/j.isprsjprs.2009.06.004 |
[76] | 姚雄, 余坤勇, 杨玉洁, 等. 基于随机森林模型的林地叶面积指数遥感估算[J]. 农业机械学报, 2017, 48(5): 159-166. |
[Yao Xiong, Yu Kunyong, Yang Yujie et al. Estimation of forest leaf area index based on random forest model and remote sensing data. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 159-166.] | |
[23] |
Han Ning, Wu Jing, Tahmassebi Amir Reza Shah et al. NDVI-based lacunarity texture for improving identification of Torreya using object-oriented method[J]. Agricultural Sciences in China, 2011, 10: 1431-1444.
doi: 10.1016/S1671-2927(11)60136-3 |
[24] |
李梦莹, 胡勇, 王征禹. 基于C5.0决策树和时序HJ-1A/B CCD数据的神农架林区植被分类[J]. 长江流域资源与环境, 2016, 25(7): 1070-1077.
doi: 10.11870/cjlyzyyhj201607008 |
[77] | 朱高龙, 居为民, Chen Jing M, 等. 帽儿山地区森林冠层叶面积指数的地面观测与遥感反演[J]. 应用生态学报, 2010, 21(8): 2117-2124. |
[Zhu Gaolong, Ju Weimin, Chen Jingmin et al. Forest canopy leaf area index in Maoershan Mountain: Ground measurement and remote sensing retrieval. Chinese Journal of Applied Ecology, 2010, 21(8): 2117-2124.] | |
[24] |
[Li Mengying, Hu Yong, Wang Zhengyu.Study on vegetation classification in Shennongjia forest district based on C5.0 decision tree and HJ-1 A/B data. Resources and Environment in the Yangtze Basin, 2016, 25(7): 1070-1077.]
doi: 10.11870/cjlyzyyhj201607008 |
[25] |
张超, 王妍. 森林类型遥感分类研究进展[J]. 西南林学院学报, 2010, 30(6): 83-89.
doi: 10.3969/j.issn.2095-1914.2010.06.019 |
[78] | 刘振波, 刘杰. 森林冠层叶面积指数遥感反演——以小兴安岭五营林区为例[J]. 生态学杂志, 2015, 34(7): 1930-1936. |
[Liu Zhenbo, Liu Jie.Retrieving forest canopy LAI from remote sensing data: A case study over Wuying forest in the Lesser Khingan. Chinese Journal of Ecology, 2015, 34(7): 1930-1936.] | |
[25] |
[Zhang Chao, Wang Yan.Research advances in forest type classification by remote sensing technology. Journal of Southwest Forestry University, 2010, 30(6): 83-89.]
doi: 10.3969/j.issn.2095-1914.2010.06.019 |
[26] |
雷光斌, 李爱农, 边金虎, 等. 基于阈值法的山区森林常绿、落叶特征遥感自动识别方法——以贡嘎山地区为例[J]. 生态学报, 2014, 34(24): 7210-7221.
doi: 10.5846/stxb201310112440 |
[Lei Guangbin, Li Ainong, Bian Jinhu et al. An practical method for automatically identifying the evergreen and deciduous characteristic of forests at mountainous areas: a case study in Mt.Gongga region. Acta Ecologica Sinica, 2014, 34(24): 7210-7221.]
doi: 10.5846/stxb201310112440 |
|
[27] |
Wu D, Linders J.Comparison of three different methods to select feature for discriminating forest cover types using SAR imagery[J]. International Journal of Remote Sensing, 2000, 21: 2089-2099.
doi: 10.1080/01431160050021312 |
[28] | 田静, 邢艳秋, 姚松涛, 等. 基于元胞自动机和BP神经网络算法的Landsat-TM遥感影像森林类型分类比较[J]. 林业科学, 2017, 53(2): 26-34. |
[Tian Jing, Xing Yanqiu, Yao Songtao et al. Comparison of Landsat-TM image forest type classification based on cellular automata and BP neural network algorithm. Scientia Silvae Sinicae, 2017, 53(2): 26-34.] | |
[79] |
Tang Hao, Dubayah Ralph, Swatantran Anu et al. Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica[J]. Remote Sensing of Environment, 2012, 124: 242-250.
doi: 10.1016/j.rse.2012.05.005 |
[80] | 赖格英, 曾祥贵, 刘影, 等. 基于ETM和图像融合的优势植被冠层叶面积指数和消光系数的遥感反演[J]. 遥感技术与应用, 2013, 28(4): 697-706. |
[29] |
Ballanti Laurel, Blesius Leonhard, Hines Ellenet al. Tree species classification using hyperspectral imagery: A comparison of two classifiers[J]. Remote sensing, 2016,. 8: NO. 445.
doi: 10.3390/rs8060445 |
[30] | 王新民. 基于小波和统计学习理论的布匹瑕疵检测与分类技术研究[D]. 西安:西安电子科技大学, 2010. |
[80] | [Lai Geying, Zeng Xianggui, Liu Ying et al. Retrieving leaf area index and extinction coefficient of dominated vegetation canopy cover in Meijiang Watershed of China using image-fusion and Landsat ETM data. Remote Sensing Technology and Application, 2013, 28(4): 697-706.] |
[81] |
刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5): 734-743.
doi: 10.3724/SP.J.1047.2013.00734 |
[30] | [Wang Xinmin.Fabric defects detection and classification technology based on wavelet and statistical learning theory. Xi’an: Xidian University, 2010.] |
[31] |
张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2):44-48.
doi: 10.13348/j.cnki.sjlyyj.2016.02.005 |
[81] |
[Liu Yang, Liu Ronggao, Chen Jingming et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data. Journal of Geo-Information Science, 2013, 15(5): 734-743.]
doi: 10.3724/SP.J.1047.2013.00734 |
[82] |
杨存建, 倪静, 周其林, 等. 不同林分郁闭度与遥感数据的相关性[J]. 生态学报, 2015, 35(7): 2119-2125.
doi: 10.5846/stxb201306101626 |
[31] |
[Zhang Liyun, Zhao Tianzhong, Xia Chaozong et al. Application of Change Detection Technologies of Remote Sensing to Forestry, World Forestry Research, 2016, 29(2):44-48. ]
doi: 10.13348/j.cnki.sjlyyj.2016.02.005 |
[32] | 李向军. 遥感土地利用变化检测方法探讨[D]. 北京:中国科学院遥感应用研究所. 2006. |
[82] |
[Yang Cunjian, Ni Jing, Zhou Qilin et al. Correlation analysis of canopy density with remote sensing data for different forest stand. Acta Ecologica Sinica, 2015, 35(7): 2119-2125.]
doi: 10.5846/stxb201306101626 |
[83] | 朱教君, 康宏樟, 胡理乐. 应用全天空照片估计林分透光孔隙度(郁闭度)[J]. 生态学杂志, 2005, 24(10): 1234-1240. |
[32] | [Li Xiangjun.Study on remote sensing land use change detection methods. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences. 2006.] |
[33] |
牟怀义. 高分1号卫星遥感影像监测林地动态变化研究[J]. 西北林学院学报, 2016, 31(4): 221-226.
doi: 10.3969/j.issn.1001-7461.2016.04.37 |
[83] | [Zhu Jiaojun, Kang Hongzhang, Hu Lile.Estimation on optical porosity or canopy closure for a forest stand with hemispherical images. Chinese Journal of Ecology, 2005, 24(10): 1234-1240.] |
[84] | 吴石磊. 基于Landsat8 OLI数据的森林郁闭度反演研究[D]. 北京:北京林业大学. 2014. |
[33] |
[Mou Huaiyi.Monitoring dynamic changes of forest land by using remote sensing images of GF-1 satellite. Journal of Northwest Forestry University, 2016, 31(4): 221-226.]
doi: 10.3969/j.issn.1001-7461.2016.04.37 |
[34] |
Campbell Michael, Congalton Russell G, Hartter Joel et al. Optimal land cover mapping and change analysis in north-eastern oregon using Landsat imagery[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(1): 37-47.
doi: 10.14358/PERS.81.1.37 |
[84] | [Wu Shilei.Research on forest canopy closure inversion based on Landsat8 OLI data. Beijing: Beijing Forestry University. 2014.] |
[85] | 王蕊, 邢艳秋, 王立海, 等. 联合星载ICESat-GLAS波形与多光谱Landsat-TM影像的森林郁闭度估测[J].应用生态学报, 2015, 26(6): 1657-1664. |
[35] |
Ye Su, Chen Dongmei, Yu Jie.A targeted change-detection procedure by combining change vector analysis and post-classification approach[J]. ISPRS Journal of Photogrammetry and remote sensing, 2016, 114: 115-124.
doi: 10.1016/j.isprsjprs.2016.01.018 |
[36] |
Sakieh Yousef, Gholipour Mostafa, Salmanmahiny Abdolrassoul. An integrated spectral-textural approach for environmental change monitoring and assessment: analyzing the dynamics of green covers in a highly developing region[J]. Environmental Monitoring and Assessment, 2016, 188(4): UNSP 205.
doi: 10.1007/s10661-016-5206-6 |
[85] | [Wang Rui, Xing Yanqiu, Wang Lihai et al. Estimating forest canopy cover by combining spaceborne ICESat-GLAS waveforms and multispectral Landsat-TM images. Chinese Journal of Applied Ecology, 2015, 26(6): 1657-1664.] |
[86] | 牛战勇, 冯娟, 谷建才, 等. 基于叶面积指数的森林郁闭度遥感反演研究[J]. 林业资源管理, 2014, (1): 46-51. |
[37] |
Collins John B, Woodcock Curtis E.An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data[J]. Remote Sensing of Environment, 1996, 56(1): 66-77.
doi: 10.1016/0034-4257(95)00233-2 |
[38] |
Malik Abdul, Mertz Ole, Fensholt Rasmus.Mangrove forest decline: consequences for livelihoods and environment in South Sulawesi[J]. Regional Environmental Change, 2017, 17(1): 157-169.
doi: 10.1007/s10113-016-0989-0 |
[86] | [Niu Zhanyong, Fengjuan, Gu Jiancai et al. Forest canopy density RS Inversion research based on LAI. Forest Resources Management, 2014, (1): 46-51.] |
[87] |
Zeng Yuan, Schaepman, Michael E., Wu Bingfang et al. Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China[J]. Remote Sensing of Environment, 2008, 112: 4261-4271.
doi: 10.1016/j.rse.2008.07.007 |
[39] | 邹利东, 潘耀忠, 朱文泉, 等. 结合邻域相关影像与最大相关性最小冗余性特征选择的面向对象变化检测[J]. 中国图象图形学报, 2014, 19(1): 158-166. |
[Zou Lidong, Pan Yaozhong, Zhu Wenquan et al. The object-oriented change detection based on neighborhood correlation images and the minimum-redundancy-maximum-relevance feature selection. Journal of Image and Graphics, 2014, 19(1): 158-166.] | |
[88] |
Pu Ruiliang, Gong Peng.Wavelet transform applied to EO-1hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sensing of Environment, 2004, 91(2): 212-224.
doi: 10.1016/j.rse.2004.03.006 |
[89] | 胡振华, 王丽媛, 岳彩荣, 等. 基于Hyperion 数据的香格里拉森林郁闭度遥感估测研究[J]. 西南林业大学学报, 2017, 37(7): 159-164. |
[40] |
Diego F, Mattia M.A novel partially supervised approach to targeted change detection[J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(12): 5016-5038.
doi: 10.1109/TGRS.2011.2154336 |
[41] |
Fernandez-Prieto Diego, Marconcini Mattia.A novel partially supervised approach to targeted change detection[J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(12): 5016-5038.
doi: 10.1109/TGRS.2011.2154336 |
[89] | [Hu Zhenhua, Wang Liyuan, Yue Cairong et al. Estimating methods of forest canopy closure based on hyperion data of Shangri-La. Journal of Southwest Forestry University, 2017, 37(7): 159-164.] |
[90] |
张瑞英, 庞勇, 李增元, 等. 结合机载LiDAR和LANDSAT ETM+数据的温带森林郁闭度估测[J]. 植物生态学报, 2016, 40(2): 102-115.
doi: 10.17521/cjpe.2014.0366 |
[42] |
Tian J, Nielsen A A, Reinartz P.Improving change detection in forest areas based on stereo panchromatic imagery using kernel MNF[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7130-7139.
doi: 10.1109/TGRS.2014.2308012 |
[43] |
李文娟, 赵传燕, 别强, 等. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015, 30(5): 917-924.
doi: 10.11873/j.issn.1004-0323.2015.5.0917 |
[90] |
[Zhang Ruiying, Pang Yong, Li Zengyuan.Canopy closure estimation in a temperate forest using airborne LiDAR and LANDSAT ETM+ data. Chinese Journal of Plant Ecology, 2016, 40(2): 102-115.]
doi: 10.17521/cjpe.2014.0366 |
[91] | José López García, Jorge Prado Molina, Lilia Manzo Delgado et al. Monitoring changes of forest canopy density in a temperature forest using high-resolution aerial digital photography[J]. Investigaciones Geográficas, 2016, 90: 59-74. |
[43] |
[Li Wenjuan, Zhao Chuanyan, Bie Qiang et al. Retrieval of the forest structural parameters using airborne LiDAR Data. Remote Sensing Technology and Application, 2015, 30(5): 917-924.]
doi: 10.11873/j.issn.1004-0323.2015.5.0917 |
[44] | 严刚. 基于pleiades影像的川西南山地常绿阔叶林林分胸径、树高和冠幅的估测研究[D]. 成都:四川农业大学, 2015. |
[92] | 王聪, 杜华强, 周国模, 等. 基于几何光学模型的毛竹林郁闭度无人机遥感定量反演[J]. 应用生态学报, 2015, 26(5): 1501-1509. |
[Wang Cong, Du Huaqiang, Zhou Guomo et al. Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model. Chinese Journal of Applied Ecology, 2015, 26(5): 1501-1509.] | |
[44] | [Yan Gang.Estimation of stand DBH, tree height and crown width of montane evergreen forest wide based on pleiades image in Sichuan Southwest. Chengdu: Sichuan Agriculture University. 2015.] |
[45] |
Li Wenkai, Guo Qinghua, Jakubowski Marek K et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric Engineering and Remote Sensing, 2012, 78: 75-84.
doi: 10.14358/PERS.78.1.75 |
[93] | 王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭森林生物量空间格局及其影响因素[J]. 应用生态学报, 2014, 25(4): 974-982. |
[Wang Xiaoli, Chang Yu, Chen Hongwei et al.Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province, China. Chinese Journal of Applied Ecology, 2014, 25(4): 974-982.] | |
[46] |
Yu Xiaowei, Hyyppa Juha, Vastaranta Mikko et al. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66: 28-37.
doi: 10.1016/j.isprsjprs.2010.08.003 |
[47] |
Thomas RQ, Hurtt GC, Dubayah R et al. Using lidar data and a height-structured ecosystem model to estimate forest carbon stocks and fluxes over mountainous terrain[J]. Canadian Journal of Remote Sensing, 2008, 34: S351-S363.
doi: 10.5589/m08-036 |
[94] |
何英. 森林固碳估计方法综述[J]. 世界林业研究, 2005, 18(1): 22-27.
doi: 10.3969/j.issn.1001-4241.2005.01.005 |
[He Ying.Summary of estimation methods of the carbon stored in forests. World Forestry Research , 2005, 18(1): 22-27.]
doi: 10.3969/j.issn.1001-4241.2005.01.005 |
|
[48] |
Goetz Scott, Steinberg Daniel, Dubayah Ralph et al. Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA[J]. Remote Sensing of Environment, 2007, 108: 254-263.
doi: 10.1016/j.rse.2006.11.016 |
[49] |
Drake Jason B., Dubayah Ralph O., Clark David .B et al. Estimation of tropical forest structural characteristics using large-footprint lidar[J]. Remote Sensing of Environment, 2002, 79: 305-319.
doi: 10.1016/S0034-4257(01)00281-4 |
[95] |
王佳, 宋珊芸, 刘霞, 等. 结合影像光谱与地形因子的森林蓄积量估测模型[J]. 农业机械学报, 2014, 45(5): 216-220.
doi: 10.6041/j.issn.1000-1298.2014.05.033 |
[Wang Jia, Song Shanyun, Liu Xia et al. Forest volume estimation model using spectra and topographic factors of ZY-3 image. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 216-220.]
doi: 10.6041/j.issn.1000-1298.2014.05.033 |
|
[96] | 涂云燕. 森林蓄积量遥感估测研究[D]. 北京:北京林业大学. 2013. |
[Tu Yunyan.The research of estimating forest volume based on remote sensing. Beijing: Beijing Forestry University. 2013.] | |
[97] | Breidenbach J, Kublin E.Estimating timber volume using airborne laser scanning data based on Bayesian methods[D]. In: IUFRO division 4 meeting: extending forest inventory and monitoring over space and time, Quebec. May 19-22, 2009. |
[98] |
Giannico Vincenzo, Lafortezza Raffaele, John Ranjeetet al. Estimating stand volume and above-ground biomass of urban forests using LiDAR[J]. Remote Sensing, 2016, 8(4): NO.339.
doi: 10.3390/rs8040339 |
[99] | Schoneberg Sebastian, Nothdurft Arne, Nuske Robert S et al. Comparison of stand volume predictions based on airborne laser scanning data versus aerial stereo images[J]. Allgemeine Forst Und Jagdzeitung, 2016, 187(1-2): 1-13. |
[100] |
刘琼阁, 彭道黎, 涂云燕. 基于偏最小二乘回归的森林蓄积量遥感估测[J]. 中南林业科技大学学报, 2014, 34(2): 81-84+132.
doi: 10.3969/j.issn.1000-2286.2013.04.023 |
[Liu Qiongge, Peng Daoli, Tu Yunyan. Estimation of forest stock volume based on partial least squares regression. Journal of Central South University of Forestry & Technology, 2014, 34(2): 81-84+132.]
doi: 10.3969/j.issn.1000-2286.2013.04.023 |
|
[101] | 张超, 彭道黎, 涂云燕. 利用TM影像和偏最小二乘回归方法估测三峡库区森林蓄积量[J]. 北京林业大学大学学报, 2013, 35(3): 11-17. |
[Zhang Chao, Peng Daoli, Tu Yunyan.Predicting forest volume in Three Gorges Reservoir Region using TM images and partial least squares regression. Journal of Beijing Forestry University, 2013, 35(3): 11-17.] | |
[102] | 刘志华, 常禹, 陈宏伟. 基于遥感、地理信息系统和人工神经网络的呼中林区森林蓄积量估测[J]. 应用生态学报, 2008, 19(9): 1891-1896. |
[Liu Zhihua, Chang Yu, Chen Hongwei.Estimation of forest volume in Huzhong forest area based on RS, GIS and ANN. Chinese Journal of Applied Ecology, 2008, 19(9): 1891-1896.] | |
[103] |
Breidenbach J, Nothdurft A, Kaendler G.Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data. European Journal of Forest Research, 2010, 129: 833-846.
doi: 10.1007/s10342-010-0384-1 |
[104] |
Tomppo Erkki, Nilsson Mats, Rosengren Mats et al. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass[J]. Remote Sensing of Environment, 2002, 82: 156-171.
doi: 10.1016/S0034-4257(02)00031-7 |
[105] | 许炜敏. 基于神经网络的杉木林蓄积量估测方法研究[D]. 福州:福建师范大学, 2012. |
[Xu Weimin.Research on the estimation method of the Chinese fir volume based on BP neural networks. Fuzhou: Fujian Normal University, 2012.] | |
[106] | 曹荞, 岳彩荣, 李圣娇, 等. 森林生物量估测进展[J]. 林业调查规划, 2015, 40(6): 22-25. |
[Cao Qiao, Yue Cairong, Li Shengjiao et al. Progress in forest biomass estimation. Forest Inventory and Planning, 2015, 40(6): 22-25.] | |
[107] |
Main-Knorn Magdalena, Cohen Warren B, Kennedy Robert E.et al.Monitoring coniferous forest biomass change using a Landsat trajectory-based approach[J]. Remote Sensing of Environment, 2013, 139: 277-290.
doi: 10.1016/j.rse.2013.08.010 |
[108] |
Luyssaert Sebastiaan, Schulze E.Detlef, Bomer Annett et al. Old-growth forests as global carbon sinks[J]. Nature, 2008, 455: 213-215.
doi: 10.1038/nature07276 pmid: 18784722 |
[109] | 苏华, 李静, 陈修治, 等. 基于森林群落和光谱曲线特征分异的福建省森林生物量遥感反演[J]. 生态学报, 2017, 37(17): 1-14. |
[Su hua, Li Jing, Chen Xiuzhiet al. Forest biomass based on the forest communities and image spectral curve characteristics: A remote sensing estimation in Fujian Province. Acta Ecologica Sinica, 2017, 37(17): 1-14.] | |
[110] |
申鑫, 曹林, 佘光辉. 高光谱与高空间分辨率遥感数据的亚热带森林生物量反演[J]. 遥感学报, 2016, 20(6): 1446-1460.
doi: 10.11834/jrs.20165210 |
[Shen Xin, Cao Lin, She Guanghui.Subtropical forest biomass estimation based on hyperspectral and high-resolution remotely sensed data. Journal of Remote Sensing, 2016, 20(6): 1446-1460.]
doi: 10.11834/jrs.20165210 |
|
[111] |
Lu, Dengsheng, Chen Qi , Wang Guangxing et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 2016, 9: 63-105.
doi: 10.1080/17538947.2014.990526 |
[112] |
Zhao Panpan, Lu Dengsheng, Wang Guangxing et al. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 2016, 53: 1-15.
doi: 10.1016/j.jag.2016.08.007 |
[113] |
Ni Wenjian, Sun Guoqing, Guo Zhifeng et al. Retrieval of forest biomass from ALOS PALSAR data using a lookup table method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6: 875-886.
doi: 10.1109/JSTARS.2012.2212701 |
[114] |
Ni Wenjian, Ranson Kenneth Jon, Zhang Zhiyu et al. Features of point clouds synthesized from multi-view ALOS / PRISM data and comparisons with LiDAR data in forested areas[J]. Remote Sensing of Environment, 2014, 149: 47-57.
doi: 10.1016/j.rse.2014.04.001 |
[115] |
Wang C Z, Qi J G.Biophysical estimation in tropical forests using JERS-1 SAR and VNIR imagery. II. Aboveground woody biomass[J]. International Journal of Remote Sensing, 2008, 29: 6827-6849.
doi: 10.1080/01431160802270123 |
[116] |
王希义, 徐海量, 潘存德, 等. 胡杨单株蓄积量与生物量关系模型研究[J]. 干旱区资源与环境, 2016, 30(5): 175-179.
doi: 10.13448/j.cnki.jalre.2016.166 |
[Wang Xiyi,Xu Hailiang, Pan Cunde et al. Study on the model of relation between volume and biomass of single Populus euphratica. Journal of Arid Land Resources and Environment, 2016, 30(5): 175-179.]
doi: 10.13448/j.cnki.jalre.2016.166 |
|
[117] |
Akasbi Z, Oldeland J, Dengler J et al. Volume-biomass functions reveal the effect of browsing on three Moroccan dwarf shrubs[J]. African Journal of Range and Forage Science, 2012, 29: 31-36.
doi: 10.2989/10220119.2012.687074 |
[118] |
Carreiras Joao M B, Vasconcelos Maria J, Lucas Richard M. Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau(West Africa)[J]. Remote Sensing of Environment, 2012, 121: 426-442.
doi: 10.1016/j.rse.2012.02.012 |
[119] | 刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1): 62-74. |
[Liu Qian, Yang Le, Liu Qinhuo et al. Review of forest above ground biomass inversion methods based on remote sensing technology. Journal of Remote Sensing, 2015, 19(1): 62-74.] | |
[120] | 李德仁, 王长委, 胡月明, 等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报(信息科学版), 2012, 37(6): 631-635. |
[Li Deren, Wang Changwei, Hu Yueming et al. General review on remote sensing-based biomass estimation. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631-635.] | |
[121] |
沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5): 1438-1449.
doi: 10.5846/stxb201510142074 |
[Shen Wenjuan, Li Mingshi.Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations. Acta Ecologica Sinica, 2017, 37(5): 1438-1449.]
doi: 10.5846/stxb201510142074 |
|
[122] |
Zhang Yao, Peng Changhui, Li Weizhong et al. Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges[J]. Environmental Reviews, 2013, 21(2): 103-115.
doi: 10.1139/er-2013-0006 |
[123] | 覃先林, 陈小中, 钟祥清, 等. 我国森林火灾预警监测技术体系发展思考[J]. 林业资源管理, 2015, (6): 45-48. |
[Qin Xianlin, Chen Xiaozhong, Zhong Xiangqing et al. Development of forest fire early warning and monitoring technique system in China. Forest Resources Management, 2015, (6): 45-48.] | |
[124] | 刘洋. 基于多源遥感数据的森林火灾信息自动化提取方法研究[D]. 北京:中国科学院遥感与数字地球研究所. 2015. |
[Liu Yang.Study for forest fire information extraction based on multi-resolution remote sensing data. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. 2015.] | |
[125] |
Sunderman Stephanie O, Weisberg Peter J.Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems[J]. Remote Sensing of Environment, 2011, 115: 2384-2389.
doi: 10.1016/j.rse.2011.05.001 |
[126] | 肖利. EOS/MODIS在川渝地区森林火灾监测中的应用研究[D]. 成都:西南交通大学. 2008. |
[Xiao Li.A study on the application of EOS/MODIS in forest fire monitoring for Sichuan and Chongqing region. Chengdu: Southwest Jiaotong University. 2008.] | |
[127] | 祖笑锋. 森林燃烧生物量和林火时空特征卫星遥感监测方法[D]. 北京: 中国林业科学研究院. 2016. |
[Zu Xiaofeng.Monitoring method for the forest burning biomass and temporal and spatial characteristics of forest fires using remote sensing techniques. Beijing: Chinese Academy of Forestry. 2016.] | |
[128] |
Krylov Alexander, McCarty Jessica L, Potapov Peteret al. Remote sensing estimates of stand-replacement fires in Russia, 2002-2011[J]. Environmental Research Letters, 2014, 9(10): NO.105007.
doi: 10.1088/1748-9326/9/10/105007 |
[129] |
Thomas J L, Polashenski C M, Soja, A J et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada[J]. Geophysical Research Letters, 2017, 44(15): 7965-7974.
doi: 10.1002/2017GL073701 |
[130] |
Navarro Gabriel, Caballero Isabel, Silva Gustavo et al. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery[J]. International Journal of Application Earth Observation and Geoinformation, 2017, 58: 97-106.
doi: 10.1016/j.jag.2017.02.003 |
[131] |
Spruce Joseph P., Sader Steven, Ryan Robert E et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks[J]. Remote Sensing of Environment, 2011, 115: 427-437.
doi: 10.1016/j.rse.2010.09.013 |
[132] |
Haara Arto, Nevalainen Seppo.Detection of dead or defoliated spruces using digital aerial data[J]. Forest Ecology and Management, 2002, 160:97-107.
doi: 10.1016/S0378-1127(01)00473-X |
[133] |
武红敢, 石进. 松毛虫灾害的TM影像监测技术[J]. 遥感学报, 2004, 8(2): 172-177.
doi: 10.11834/jrs.20040212 |
[Wu Honggan, Shi Jin.Monitoring technique of pine caterpillars with TM image. Journal of Remote Sensing, 2004, 8(2): 172-177.]
doi: 10.11834/jrs.20040212 |
|
[134] |
Adams M L, Philpot W D.Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation[J]. International Journal of Remote Sensing, 1999, 20: 3663-3675.
doi: 10.1080/014311699211264 |
[135] |
曹庆先. 基于遥感影像的红树林虫害监测模型[J]. 广西科学, 2017, 24(2): 144-149.
doi: 10.13656/j.cnki.gxkx.20170411.002 |
[Cao Qingxian.Mangrove pests monitoring model based on the remote sesning image. Guangxi Sciences, 2017, 24(2): 144-149.]
doi: 10.13656/j.cnki.gxkx.20170411.002 |
|
[136] |
Coops Nicholas C, Waring Richard H, Wulder Michael Aet al. Prediction and assessment of bark beetle-induced mortality of lodgepole pine using estimates of stand vigor derived from remotely sensed data[J]. Remote Sensing of Environment, 2009, 113: 1058-1066.C
doi: 10.1016/j.rse.2009.01.013 |
[137] | 王蕾, 骆有庆, 张晓丽, 等. 遥感技术在森林病虫害监测中的应用研究进展[J]. 世界林业研究, 2008, 21(5): 37-43. |
[Wang Lei, Luo Youqing, Zhang Xiaoli et al. Application development of remote sensing technology in the assessment of forest pest disaster. World Forestry Research, 2008, 21(5): 37-43.] | |
[138] |
蒋杰贤, 赵京音, 柴晓玲. 我国森林害虫监测预报技术研究进展(综述)[J]. 上海农业学报, 2003, 19(1): 58-62.
doi: 10.3969/j.issn.1000-3924.2003.01.015 |
[Jiang Jiexian, Zhao Jingyin, Chai Xiaoling.Research progress on monitoring and forecasting of forest pests in China (a review). Acta Agriculturae Shanghai, 2003, 19(1): 58-62.]
doi: 10.3969/j.issn.1000-3924.2003.01.015 |
|
[139] |
Stone Christine, Carnegie Angus, Melville Gavin et al. Aerial mapping canopy damage by the aphid Essigella californica in a Pinus radiata plantation in southern New South Wales: what are the challenges?[J] Australian Forestry, 2013, 76(2): 101-109.
doi: 10.1080/00049158.2013.799055 |
[140] |
Shafri Helmi Zulhaidi Mohd, Hamdan Nasrulhapiza. Hyperspectral imagery for mapping disease infection in oil palm plantation using vegetation indices and red edge techniques[J]. American Journal of Applied Sciences, 2009, 6(6): 1031-1035.
doi: 10.3844/ajassp.2009.1031.1035 |
[141] |
武红敢, 常原飞, 石木耀. 森林灾害的高分遥感辅助调查技术体系研究[J]. 林业资源管理, 2014, (5): 43-50.
doi: 10.13466/j.cnki.lyzygl.2014.05.009 |
[Wu Honggan, Chang Yuanfei, Shi Muyao.Study on technical system of forest disaster investigation aided by high spatial resolution remote sensing technology. Forest Resources Management, 2014, (5): 43-50.]
doi: 10.13466/j.cnki.lyzygl.2014.05.009 |
|
[142] | 张远彬, 王开运, Kellomäki Seppo.针叶林林窗研究进展[J]. 世界科技研究与发展, 2003, 25(5): 69-74. |
[Zhang Yuanbin, Wang Kaiyun, Kellomäki Seppo.Advance in coniferous forest gap. World Sci-Tech R & D, 2003, 25(5): 69-74.] | |
[143] |
Watt Alex S.Pattern and process in the plant community[J]. Journal of Ecology, 1947, 35: 122.
doi: 10.2307/2256497 |
[144] |
管云云, 费菲, 关庆伟, 等. 林窗生态学研究进展.[J] 林业科学, 2016, 52(4): 91-99.
doi: 10.11707/j.1001-7488.20160411 |
[Guan Yunyun, Fei Fei, Guan Qingwei et al. Advances in studies of forest gap ecology. Scientia Silvae Sinicae, 2016, 52(4): 91-99.]
doi: 10.11707/j.1001-7488.20160411 |
|
[145] |
Gray Andrew N, Spies Thomas A, Pabst Robert J.Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest[J]. Forest Ecology and Management, 2012, 281: 111-120.
doi: 10.1016/j.foreco.2012.06.035 |
[146] |
Elias Rui Bento, Dias Eduardo.Gap dynamics and regeneration strategies in Juniperus-Laurus forests of the Azores Islands[J]. Plant Ecology, 2009, 200: 179-189.
doi: 10.1007/s11258-008-9442-x |
[147] |
Larjavaara Markku, Muller-Landau Helene C. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest[J]. Methods in Ecology and Evolution, 2013, 4(9): 793-801.
doi: 10.1111/2041-210X.12071 |
[148] | 刘峰, 谭畅, 王红, 等. 基于机载激光雷达的中亚热带常绿阔叶林林窗特征[J]. 应用生态学报, 2015, 26(12): 3611-3618. |
[Liu Feng, Tan Chang, Wang Hon et al. Characterization of mid-subtropical evergreen broad-leaved forest gap based on light detection and ranging ( LiDAR) . Chinese Journal of Applied Ecology, 2015, 26(12): 3611-3618.] | |
[149] |
Vepakomma Udayalakshmi, St-Onge Benoit, Kneeshaw Daniel.Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data[J]. Remote Sensing of Environment, 2008, 112(5): 2326-2340.
doi: 10.1016/j.rse.2007.10.001 |
[150] |
Zhang Jian, Hu Jianbo, Lian Juyu et al. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring[J]. Biological Conservation, 2016, 198: 60-69.
doi: 10.1016/j.biocon.2016.03.027 |
[151] |
隋丹丹, 王悦, 练琚愉, 等. 鼎湖山南亚热带常绿阔叶林林窗分布格局及其成因[J]. 生物多样性, 2017, 25(4): 382-392.
doi: 10.17520/biods.2017027 |
[Sui Dandan, Wang Yue, Lian Juyu et al. Gap distribution patterns in the south subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 2017, 25(4): 382-392.]
doi: 10.17520/biods.2017027 |
|
[152] |
刘峰, 谭畅, 王红, 等. 基于LiDAR的亚热带次生林林窗对幼树更新影响分析[J]. 农业机械学报, 2017, 48(3): 198-204.
doi: 10.6041/j.issn.1000-1298.2017.03.025 |
[Liu Feng, Tan Chang, Wang Hong et al. Effect of canopy gap on subtropical secondary forest sapling regeneration based on LiDAR. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 198-204.]
doi: 10.6041/j.issn.1000-1298.2017.03.025 |
|
[153] |
Torimaru Takeshi, Itaya Akemi, Yamamoto Shin-Ichi.Quantification of repeated gap formation events and their spatial patterns in three types of old-growth forests: Analysis of long-termcanopy dynamics using aerial photographs and digital surface models[J]. Forest Ecology and Management, 2012, 284: 1-11.
doi: 10.1016/j.foreco.2012.07.044 |
[154] |
Zhang Keqi.Identification of gaps in mangrove forests with air borne LIDAR[J]. Remote Sensing of Environment, 2008, 112: 2309-2325.
doi: 10.1016/j.rse.2007.10.003 |
[155] |
Li Yumei, Guo Qinghua, Su Yanjun et al. Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 308-316.
doi: 10.1016/j.isprsjprs.2017.06.006 |
[156] |
Hall R J, Castilla G, White J C et al. Remote sensing of forest pest damage: a review and lessons learned from a Canadian perspective[J]. Canadian Entomologist, 2016, 148(1): S296-S356.
doi: 10.4039/tce.2016.11 |
[157] |
Hua Lizhong, Shao Guofan.The progress of operational forest fire monitoring with infrared remote sensing[J]. Journal of Forest Research, 2017, 28(2): 215-229.
doi: 10.1007/s11676-016-0361-8 |
[158] |
Masek J G, Hayes D J, Hughes M J et al. The role of remote sensing in process-scaling studies of managed forest ecosystems[J]. Forest Ecology and Management, 2015, 355: 109-123.
doi: 10.1016/j.foreco.2015.05.032 |
[159] | 曹林, 徐婷, 申鑫, 等. 集成Landsat OLI和机载LiDAR条带数据的亚热带森林生物量制图[J]. 遥感学报, 2016, 20(4): 665-678. |
[Cao Lin, Xu Ting, Shen Xin et al. Mapping biomass by integrating Landsat OLI and airborne LiDAR transect data in subtropical forests. Journal of Remote Sensing, 2016, 20(4): 665-678.] | |
[160] |
Wulder Michael A, Coops Nicholas C.Make Earth observations open access[J]. Nature, 2014, 513: 30-31.
doi: 10.1038/513030a pmid: 25186885 |
[161] |
赵静, 李静, 柳钦火. 森林垂直结构参数遥感反演综述[J]. 遥感学报, 2013, 17(4): 697-716.
doi: 10.11834/jrs.20132183 |
[Zhao Jing, Li Jing, Liu Qinghuo.Review of forest vertical structure parameter inversion based on remote sensing technology. Journal of Remote Sensing, 2013, 17(4): 697-716.]
doi: 10.11834/jrs.20132183 |
|
[162] | Bellman Richard E.Adaptive Control Processes: A Guided Tour[M]. Princeton. New Jersey: Princeton University Press. 2015. |
[163] |
Vauhkonen Jari, Maltamo Matti, Mcroberts Ronald E et al. Introduction to forestry applications of airborne laser scanning[J]. Springer Netherlands, 2014, 27: 1-16.
doi: 10.1007/978-94-017-8663-8_1 |
[164] |
Getzin Stephan, Wiegand Kerstin, Schöning Ingo.Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles[J]. Methods in Ecology and Evolution, 2012, 3: 397-404.
doi: 10.1111/j.2041-210X.2011.00158.x |
[165] |
Leh Mansoor D K, Matlock Marty D, Cummings Eric Cet al. Quantifying and mapping multiple ecosystem services change in West Africa[J]. Agriculture, Ecosystems and Environment, 2013, 165: 6-18.
doi: 10.1016/j.agee.2012.12.001 |
[166] |
李登秋, 居为民, 郑光, 等. 基于生态过程模型和森林清查数据的森林生长量估算对比研究[J]. 生态环境学报, 2013, 22(10): 1647-1657.
doi: 10.3969/j.issn.1674-5906.2013.10.002 |
[Li Dengqiu, Ju Weimin, Zheng Guang et al. Comparison of estimated forest biomass increment rate based on a process-based ecological model and forest inventory data. Ecology and Environmental Sciences, 2013, 22(10): 1647-1657.]
doi: 10.3969/j.issn.1674-5906.2013.10.002 |
|
[167] |
Liu Dawei, Sun Guoqing, Guo Zhifeng et al. Three-dimensional coherent radar backscatter model and simulations of scattering phase center of forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48: 349-357.
doi: 10.1109/TGRS.2009.2024301 |
[1] | 辛晓华, 吕拉昌. 中国主要城市技术创新影响环境污染的空间分异与机理[J]. 地理科学, 2021, 41(1): 129-139. |
[2] | 张衔春, 胡国华, 单卓然, 李禕. 中国城市区域治理的尺度重构与尺度政治[J]. 地理科学, 2021, 41(1): 100-108. |
[3] | 王怀军, 张建云, 王国庆, 曹蕾, 潘莹萍, 冯如. 中国中小河流气候和下垫面与产汇流过程关系研究[J]. 地理科学, 2021, 41(1): 109-120. |
[4] | 孙才志, 孟程程. 中国区域水资源系统韧性与效率的发展协调关系评价[J]. 地理科学, 2020, 40(12): 2094-2104. |
[5] | 刘敏, 姜会明, 姜天龙. 农机投入对农业GTFP影响及门槛效应的区域差异分析[J]. 地理科学, 2020, 40(12): 2037-2045. |
[6] | 杨水根, 王露. 湖南省武陵山片区人口城镇化与流通产业发展协同演化及其减贫效应研究[J]. 地理科学, 2020, 40(11): 1909-1920. |
[7] | 朱纪广, 许家伟, 李小建, 娄帆, 陈玉蓉. 中国土地城镇化和人口城镇化对经济增长影响效应分析[J]. 地理科学, 2020, 40(10): 1654-1662. |
[8] | 刘本城, 房艳刚. 辽中南城市群农业多功能演变特征与地域模式[J]. 地理科学, 2020, 40(10): 1720-1730. |
[9] | 庄德林, 王鹏鹏, 许基兰, 张菂. 中国创业投资城市网络空间结构演变研究[J]. 地理科学, 2020, 40(8): 1256-1265. |
[10] | 仇方道, 张春丽, 郭梦梦, 郑紫颜, 单勇兵. 中国再生性资源型城市创新能力与工业转型耦合协调分析[J]. 地理科学, 2020, 40(7): 1092-1103. |
[11] | 赵儒煜, 许军. 东北地区要素空间集聚与不平衡发展研究[J]. 地理科学, 2020, 40(7): 1104-1113. |
[12] | 敬博, 李同昇, 温伯清, 成文浩. 基于地形因素的秦巴山区人口-经济空间格局及其影响机制研究[J]. 地理科学, 2020, 40(5): 793-803. |
[13] | 宗会明, 吕瑞辉. 基于物流企业数据的2007-2017年中国城市网络空间特征及演化[J]. 地理科学, 2020, 40(5): 760-767. |
[14] | 杜群阳, 俞航东. 中国多维城市空间结构与地区收入差距[J]. 地理科学, 2020, 40(5): 720-729. |
[15] | 赵鹏军, 于昭, 贾雨田. 中国村镇居民跨区域出行与乡村地域系统调查研究[J]. 地理科学, 2020, 40(4): 498-508. |
|