地理科学 ›› 2018, Vol. 38 ›› Issue (11): 1904-1913.doi: 10.13249/j.cnki.sgs.2018.11.018
张春华1(), 李修楠1,2, 吴孟泉1, 秦伟山1, 张筠1
收稿日期:
2017-11-26
修回日期:
2018-06-14
出版日期:
2018-11-20
发布日期:
2018-11-20
作者简介:
作者简介:张春华(1984-),女,山东成武人,讲师,博士,主要从事植被生态遥感和森林碳循环模拟研究。E-mail:
基金资助:
Chunhua Zhang1(), Xiunan Li1,2, Mengquan Wu1, Weishan Qin1, Jun Zhang1
Received:
2017-11-26
Revised:
2018-06-14
Online:
2018-11-20
Published:
2018-11-20
Supported by:
摘要:
利用2015年Landsat 8 OLI遥感影像和DEM作为分类数据源,结合野外调查数据,采用面向对象的分类方法对昆嵛山地区土地覆盖信息进行提取,并对分类结果进行精度评价与比较分析。研究表明:面向对象分类方法提取的各地类连续且边界清晰,分类效果与实际情况基本吻合。昆嵛山地区占主导地位的土地覆盖类型是针叶林,面积为1 546.81 km2。研究区土地覆盖分类的总体精度和Kappa系数分别为91.5%和0.88,其中针叶林、草地、水体和建设用地的生产者精度均达到87%以上。相对于监督分类方法,本研究提出的土地覆盖信息提取方法的总体分类精度和Kappa系数分别提高14.7%和0.17。基于面向对象的中分辨率遥感影像,能够获取较高精度的土地覆盖信息,为大范围土地覆盖分类研究提供方法参考。
中图分类号:
张春华, 李修楠, 吴孟泉, 秦伟山, 张筠. 基于Landsat 8 OLI数据与面向对象分类的昆嵛山地区土地覆盖信息提取[J]. 地理科学, 2018, 38(11): 1904-1913.
Chunhua Zhang, Xiunan Li, Mengquan Wu, Weishan Qin, Jun Zhang. Object-oriented Classification of Land Cover Based on Landsat 8 OLI Image Data in the Kunyu Mountain[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(11): 1904-1913.
表3
面向对象分类方法分类结果混淆矩阵"
样点数(个) | 实际类别 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
水体 | 建设用地 | 针叶林 | 耕地 | 裸地 | 阔叶林 | 草地 | 总和 | 用户精度(%) | ||
分类类别 | 水体 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 100.00 |
建设用地 | 3 | 69 | 0 | 0 | 6 | 0 | 0 | 78 | 88.46 | |
针叶林 | 1 | 0 | 108 | 11 | 0 | 0 | 0 | 120 | 90.00 | |
耕地 | 0 | 0 | 1 | 36 | 0 | 0 | 0 | 37 | 97.30 | |
裸地 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 21 | 100.00 | |
阔叶林 | 0 | 0 | 1 | 0 | 0 | 9 | 0 | 10 | 90.00 | |
草地 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 11 | 72.73 | |
总和 | 33 | 69 | 110 | 47 | 27 | 12 | 8 | 306 | ||
生产者精度(%) | 87.88 | 100.00 | 98.18 | 76.60 | 77.78 | 75.00 | 100.00 | |||
总体分类精度:91.5%;Kappa系数:0.88 |
表4
监督分类方法分类结果混淆矩阵"
样点数(个) | 实际类别 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
水体 | 建设用地 | 针叶林 | 耕地 | 裸地 | 阔叶林 | 草地 | 总和 | 用户精度(%) | ||
分类类别 | 水体 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 100.00 |
建设用地 | 2 | 62 | 3 | 0 | 3 | 0 | 0 | 70 | 88.57 | |
针叶林 | 0 | 0 | 70 | 0 | 0 | 0 | 2 | 72 | 97.22 | |
耕地 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 40 | 100.00 | |
裸地 | 5 | 7 | 0 | 2 | 24 | 0 | 0 | 38 | 63.16 | |
阔叶林 | 0 | 0 | 10 | 0 | 0 | 9 | 2 | 21 | 42.86 | |
草地 | 0 | 0 | 27 | 5 | 0 | 3 | 4 | 39 | 10.26 | |
总和 | 33 | 69 | 110 | 47 | 27 | 12 | 8 | 306 | ||
生产者精度(%) | 78.79 | 89.86 | 63.64 | 85.11 | 88.89 | 75.00 | 50.00 | |||
总体分类精度:76.8%;Kappa系数:0.71 |
[1] | 朱永森, 曾永年, 张猛. 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取[J]. 农业工程学报, 2017, 33: 258-265. |
[Zhu Yongsen, Zeng Yongnian, Zhang Meng.Object-oriented classification of land use/cover based on HJ satellites data. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33: 258-265.] | |
[2] |
黄亚博, 廖顺宝. 首套全球30 m分辨率土地覆被产品区域尺度精度评价——以河南省为例[J]. 地理研究, 2016, 35(8): 1433-1446.
doi: 10.11821/dlyj201608003 |
[Huang Yabo, Liao Shunbao.Regional accuracy assessments of the first global land cover dataset at 30-meter resolution: A case study of Henan province. Geographical Research, 2016, 35(8): 1433-1446.]
doi: 10.11821/dlyj201608003 |
|
[3] |
Gómez C, White J C, Wulder M A.Optical remotely sensed time series data for land cover classification: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 55-72.
doi: 10.1016/j.isprsjprs.2016.03.008 |
[4] |
Jin S M, Yang L M, Zhu Z. et al. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011[J]. Remote Sensing of Environment, 2017, 195: 44-55.
doi: 10.1016/j.rse.2017.04.021 |
[5] |
Andrew M E, Wulder M A, Nelson T A.Potential contributions of remote sensing to ecosystem service assessments[J]. Progress in Physical Geography, 2014, 38(3): 328-353.
doi: 10.1177/0309133314528942 |
[6] |
Huang H B, Chen Y L, Clinton N. et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine[J]. Remote Sensing of Environment, 2017, 202: 166-176.
doi: 10.1016/j.rse.2017.02.021 |
[7] |
Gong P, Wang J, Yu L. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7): 2607-2654.
doi: 10.1080/01431161.2012.748992 |
[8] |
Yu L, Liang L, Wang J. et al. Meta-discoveries from a synthesis of satellite-based land-cover mapping research[J]. International Journal of Remote Sensing, 2014, 35(13): 4573-4588.
doi: 10.1080/01431161.2014.930206 |
[9] |
Khatami R, Mountrakis G, Stehman S V.A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification process: General guidelines for practitioners and future research[J]. Remote Sensing of Environment, 2016, 177: 89-100.
doi: 10.1016/j.rse.2016.02.028 |
[10] |
Zhang H K, Roy D P.Using the 500m MODIS land cover product to derive a consistent continental scale 30m Landsat land cover classification[J]. Remote Sensing of Environment, 2017, 197: 15-34.
doi: 10.1016/j.rse.2017.05.024 |
[11] |
张昊然. 遥感影像信息提取的方式[J]. 测绘与空间地理信息, 2014, 37(2): 156-158.
doi: 10.3969/j.issn.1672-5867.2014.02.046 |
[Zhang Haoran.Remote sensing information extraction method. Geomatics & Spatial Information Technology, 2014, 37(2): 156-158.]
doi: 10.3969/j.issn.1672-5867.2014.02.046 |
|
[12] |
Estoque R C, Murayama Y.Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices[J]. Ecological Indicators, 2015, 56: 205-217.
doi: 10.1016/j.ecolind.2015.03.037 |
[13] |
Shao Y, Lunetta R S, Wheeler B. et al. An evaluation of time-series smoothing algorithms for land-cover classification using MODIS-NDVI multi-temporal data[J]. Remote Sensing of Environment, 2016, 174: 258-265.
doi: 10.1016/j.rse.2015.12.023 |
[14] |
李亮, 周亚光, 梁彬, 等. 融合时间特征的遥感影像分类[J]. 国土资源遥感, 2017, 29(1): 36-42.
doi: 10.6046/gtzyyg.2017.01.06 |
[Li Liang, Zhou Yaguang, Liang Bin. et al. Remote sensing image classification based on fusion of temporal features. Remote Sensing for Land and Resources, 2017, 29(1): 36-42.]
doi: 10.6046/gtzyyg.2017.01.06 |
|
[15] |
Mack B, Leinenkugel P, Kuenzer C. et al. A semi-automated approach for the generation of a new land use and land cover product for Germany based on Landsat time-series and Lucas in-situ data[J]. Remote Sensing Letters, 2017, 8(3): 244-253.
doi: 10.1080/2150704X.2016.1249299 |
[16] |
Jia K, Liang S L, Wei X Q. et al. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data[J]. Remote Sensing, 2014, 6: 11518-11532.
doi: 10.3390/rs61111518 |
[17] |
王宇航, 范文义, 刘超逸. 基于面向对象的QUICKBIRD数据和SAR数据融合的地物分类[J]. 东北林业大学学报, 2016, 44(9): 44-49.
doi: 10.3969/j.issn.1000-5382.2016.09.010 |
[Wang Yuhang, Fan Wenyi, Liu Chaoyi. et al. An object-based fusion of QUICKBIRD data and RADARSAT SAR data for classification analysis. Journal of Northeast Forestry University, 2016, 44(9): 44-49.]
doi: 10.3969/j.issn.1000-5382.2016.09.010 |
|
[18] |
Chen B, Huang B, Xu B.Multi-source remotely sensed data fusion for improving land cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124: 27-39.
doi: 10.1016/j.isprsjprs.2016.12.008 |
[19] | 王志慧, 李世明, 刘良云, 等. 基于MODIS NDVI时间序列的土地覆盖分层分类方法研究[J]. 遥感技术与应用, 2013, 28(5): 910-919. |
[Wang Zhihui, Li Shiming, Liu Liangyun. et al. Hierarchical land cover classification based on MODIS NDVI time-series. Remote Sensing Technology and Application, 2013, 28(5): 910-919.] | |
[20] |
Zhang W W, Chen J, Liao A P. et al. Geospatial knowledge-based verification and improvement of GlobeLand30[J]. Science China Earth Sciences, 2016, 59(9): 1709-1719.
doi: 10.1007/s11430-016-5318-4 |
[21] |
王娟, 廖静娟, 沈国状, 等. 基于面向对象技术的鄱阳湖湿地地物分类研究[J]. 遥感技术与应用, 2016, 31(3): 543-550.
doi: 10.11873/j.issn.1004-0323.2016.3.0543 |
[Wang Juan, Liao Jingjuan, Shen Guozhuang. et al. Study on classification of Poyang Lake wetland using object-oriented technology. Remote Sensing Technology and Application, 2016, 31(3): 543-550.]
doi: 10.11873/j.issn.1004-0323.2016.3.0543 |
|
[22] |
Hadavand A, Saadatseresht M, Homayouni S.Segmentation parameter selection for object-based land-cover mapping from ultra high resolution spectral and elevation data[J]. International Journal of Remote Sensing, 2017, 38(12): 3586-3607.
doi: 10.1080/01431161.2017.1302107 |
[23] |
Ma L, Li M C, Ma X X. et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 277-293.
doi: 10.1016/j.isprsjprs.2017.06.001 |
[24] |
Roy D P, Wulder M A, Loveland T R. et al. Landsat-8: Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145: 154-172.
doi: 10.1016/j.rse.2014.02.001 |
[25] |
Jia K, Wei X Q, Gu X F. et al. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China[J]. Geocarto International, 2014, 29(8): 941-951.
doi: 10.1080/10106049.2014.894586 |
[26] |
Zhu Z, Woodcock C E.Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171.
doi: 10.1016/j.rse.2014.01.011 |
[27] |
Coulter L L, Stow D A, Tsai Y H. et al. Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery[J]. Remote Sensing of Environment, 2016, 184: 396-409.
doi: 10.1016/j.rse.2016.07.016 |
[28] |
Henits L, Jürgens C, Mucsi L.Seasonal multitemporal land-cover classification and change detection analysis of Bochum, Germany, using multitemporal Landsat TM data[J]. International Journal of Remote Sensing, 2016, 37(15): 3439-3454.
doi: 10.1080/01431161.2015.1125558 |
[29] |
徐涵秋, 唐菲. 新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11): 3249-3257.
doi: 10.5846/stxb201305030912 |
[Xu Hanqiu, Tang Fei.Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecologica Sinica, 2013, 33(11): 3249-3257.]
doi: 10.5846/stxb201305030912 |
|
[30] |
Zhu Z, Fu Y C, Woodcock C E. et al. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000-2014)[J]. Remote Sensing of Environment, 2016, 185: 243-257.
doi: 10.1016/j.rse.2016.03.036 |
[31] |
陈齐, 李新通. Landsat 8 OLI影像新增特征对土地覆盖遥感分类的影响分析[J]. 亚热带资源与环境学报, 2015, 10(3): 79-86.
doi: 10.3969/j.issn.1673-7105.2015.03.012 |
[Chen Qi, Li Xintong.Effects of new characteristics of Landsat 8 operational land imager (OLI) data on land-cover remote sensing classification. Journal of Subtropical Resources and Environment, 2015, 10(3): 79-86.]
doi: 10.3969/j.issn.1673-7105.2015.03.012 |
|
[32] |
Hackman K O, Gong P, Wang J.New land-cover maps of Ghana for 2015 using Landsat 8 and three popular classifiers for biodiversity assessment[J]. International Journal of Remote Sensing, 2017, 38(14): 4008-4021.
doi: 10.1080/01431161.2017.1312619 |
[33] |
Li C C, Gong P, Wang J. et al. The first all-season sample set for mapping global land cover with Landsat-8 data[J]. Science Bulletin, 2017, 62: 508-515.
doi: 10.1016/j.scib.2017.03.011 |
[34] |
Goodin D G, Anibas K L, Bezymennyi M.Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape[J]. International Journal of Remote Sensing, 2015, 36(18): 4702-4723.
doi: 10.1080/01431161.2015.1088674 |
[35] |
张森, 陈健飞, 龚建周. 面向对象分类的决策树方法探讨—以Landsata-8 OLI为例[J]. 测绘科学, 2016, 41(6): 117-125.
doi: 10.16251/j.cnki.1009-2307.2016.06.025 |
[Zhang Sen, Chen Jianfei, Gong Jianzhou.Object-oriented classification based on C5.0 algorithm. Science of Surveying and Mapping, 2016, 41(6): 117-125.]
doi: 10.16251/j.cnki.1009-2307.2016.06.025 |
|
[36] |
牟进鹏, 陈妮娜, 董章凯. 昆嵛山国家级自然保护区物种水平指标的分析与研究[J]. 吉林业科技, 2014, 43(2): 22-24.
doi: 10.3969/j.issn.1005-7129.2014.02.008 |
[Mu Jinpeng, Chen Nina, Dong Zhangkai.Analysis and research of species level indicator in Kunyu Mountain national nature reserve. Journal of Jilin Forestry Science and Technology, 2014, 43(2): 22-24.]
doi: 10.3969/j.issn.1005-7129.2014.02.008 |
|
[37] | 杜宁, 王琦, 郭卫华, 等. 昆嵛山典型植物群落生态学特性[J]. 生态学杂志, 2007, 26(2): 151-158. |
[Du Ning, Wang Qi, Guo Weihua, et al.Ecological characteristics of typical plant communities in Kunyu Mountain. Chinese Journal of Ecology, 2007, 26(2): 151-158.] | |
[38] | 杜华. 昆嵛山赤松林不同林型结构特征与生产力的研究[J]. 北京林业大学学报, 2012, 34(1): 19-24. |
[Du Hua.Community structure characteristics and productivity of varied Pinus densiflora forest types in Kunyu Mountain. Journal of Beijing Forestry University, 2012, 34(1): 19-24.] | |
[39] | 王强. 昆嵛山生产力特征及其与植被指数、生物多样性关系[D]. 济南: 山东大学, 2011. |
[Wang Qiang.The net primary production characteristics and its relationship with vegetation indices, biodiversity at Kunyu Mountain. Jinan: Shandong University, 2011.] | |
[40] | 张增祥. 中国土地覆盖遥感监测[M]. 北京: 星球地图出版社, 2010. |
[Zhang Zengxiang.China land cover monitoring. Beijing: Planet Map Publishing House, 2010.] | |
[41] |
路春燕, 王宗明, 贾明明, 等. 基于ENVISAT ASAR、Landsat TM与DEM的泥炭沼泽信息提取方法[J]. 武汉大学学报信息科学版, 2017, 42(2): 185-192.
doi: 10.13203/j.whugis20140669 |
[Lu Chunyan, Wang Zongming, Jia Mingming, et al.Peatland extraction based on ENVISAT ASAR, Landsat TM and DEM data. Geomatics and Information Science of Wuhan University, 2017, 42(2): 185-192.]
doi: 10.13203/j.whugis20140669 |
|
[42] |
Drǎgut L, Tiede D, Levick S R.ESP-A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6): 859-871.
doi: 10.1080/13658810903174803 |
[1] | 周毅, 王泽涛, 杨锋. 基于DEM的黄土沟谷横剖面形态特征研究——以宜君、延安、绥德为例[J]. 地理科学, 2020, 40(3): 455-465. |
[2] | 李仁杰, 谷枫, 郭风华, 傅学庆. 基于DEM的交通线文化景观感知与功能分段研究——紫荆关长城景观的实证[J]. 地理科学, 2015, 35(9): 1086-1094. |
[3] | 朱红春, 汤国安, 李永胜. 黄土沟谷特征点簇及其空间结构模型研究[J]. 地理科学, 2015, 35(9): 1170-1175. |
[4] | 胡云锋, 徐芝英. 蒙古高原地形与植被指数的特征尺度及多尺度耦合关系[J]. 地理科学, 2014, 34(12): 1511-1517. |
[5] | 田剑, 汤国安, 周毅, 宋效东. 黄土高原沟谷密度空间分异特征研究[J]. 地理科学, 2013, 33(5): 622-628. |
[6] | 刘远, 周买春, 陈芷菁, 李绍文. 基于不同DEM数据源的数字河网提取对比分析——以韩江流域为例[J]. 地理科学, 2012, 32(9): 1112-1118. |
[7] | 马士彬, 安裕伦. 基于ASTER GDEM数据喀斯特区域地貌类型划分与分析[J]. 地理科学, 2012, 32(3): 368-373. |
[8] | 李军, 黄敬峰, 游松财. 不同空间尺度DEM对山区气温空间分布模拟的影响——以浙江省仙居县为例[J]. 地理科学, 2012, 32(11): 1384-1390. |
[9] | 董一帆, 伍永秋. 利用虚拟插钎对切沟沟底不同部位短期变化的初步研究[J]. 地理科学, 2010, 30(6): 892-897. |
[10] | 陶旸, 汤国安, 王春, 祝士杰, 杨昕. DEM地形信息量计算的不确定性研究[J]. 地理科学, 2010, 30(3): 398-402. |
[11] | 周毅, 汤国安, 王春, 肖晨超, 董有福, 孙京禄. 基于高分辨率DEM的黄土地貌正负地形自动分割技术研究[J]. 地理科学, 2010, 30(2): 261-266. |
[12] | 吴泉源, 刘廷祥, 黄丽梅, 王晓怡, 张晓丽, 王艳泽, 徐刚. 采煤塌陷地水域淹没范围模拟分析[J]. 地理科学, 2009, 29(3): 397-401. |
[13] | 赵洪壮, 李有利, 杨景春, 吕红华. 基于DEM数据的北天山地貌形态分析[J]. 地理科学, 2009, 29(3): 445-449. |
[14] | 周德民, 程进强, 熊立华. 基于DEM的洪泛平原湿地数字水系提取研究[J]. 地理科学, 2008, 28(6): 776-781. |
[15] | 雍斌, 张万昌, 刘传胜. 基于改进型多流向算法的地形指数空间尺度变化分析[J]. 地理科学, 2007, 27(5): 683-688. |
|