地理科学 ›› 2018, Vol. 38 ›› Issue (12): 1952-1960.doi: 10.13249/j.cnki.sgs.2018.12.002
收稿日期:
2018-04-09
修回日期:
2018-06-05
出版日期:
2018-12-20
发布日期:
2018-12-20
作者简介:
作者简介:杨俊(1978-),男,湖北孝昌人,教授,主要从事区域地表过程、土地利用变化模拟与地理信息系统应用研究。E-mail:
基金资助:
Jun Yang(), Yajun Bao, Cui Jin(
), Xueming Li, Yonghua Li
Received:
2018-04-09
Revised:
2018-06-05
Online:
2018-12-20
Published:
2018-12-20
Supported by:
摘要:
研究房价、遥感影像等多源数据,采用邻域分析法和地理加权回归模型分析大连市中山区绿地可达性及其与房价之间的空间相关性。结果表明:① 房价均价14 745.35元/m2,呈环状分布,由沿海向内陆衰减、桂林街道起中心向外围递减;② 研究区内可达性最好的绿地类型是街旁绿地,绿地可达性总体水平最高街道是桂林街道;公园绿地可达性最好的住宅区分布在昆明街道和桃源街道,街旁绿地可达性最好的住宅区分布在桂林街道,附属绿地可达性最好的分布在老虎滩街道,其他绿地可达性最好的分布在桃源街道。③ 不同类型绿地可达性对房价影响作用程度递减排序为:附属绿地、街旁绿地、公园绿地和其他绿地;附属绿地、街旁绿地和其他绿地与房价呈现空间正相关,随着到达绿地距离降低,房价呈现增长趋势;公园绿地与房价呈现负相关,随着到达公园绿地的距离降低,房价呈现衰减趋势。
中图分类号:
杨俊, 鲍雅君, 金翠, 李雪铭, 李永化. 大连城市绿地可达性对房价影响的差异性分析[J]. 地理科学, 2018, 38(12): 1952-1960.
Jun Yang, Yajun Bao, Cui Jin, Xueming Li, Yonghua Li. The Impact of Urban Green Space Accessibility on House Prices in Dalian City[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(12): 1952-1960.
表3
全局回归模型结果"
模型 | B | 标准误差 | t | ||
---|---|---|---|---|---|
区位属性 | (截距) | 0.000* | 469.859 | 8.769 | 0.000* |
dAirpot | 0.000* | 0.248 | 6.285 | 0.000* | |
dTrain | 0.006* | 0.478 | -2.841 | 0.000* | |
建筑属性 | Manfee | 0.000* | 258.454 | 6.948 | 0.000* |
PlotRate | 0.054 | 1324.856 | 3.973 | 0.013* | |
邻里环境 | DisRast | 0.007* | 6.013 | 0.311 | 0.007* |
DisATM | 0.006* | 6.360 | -0.455 | 0.000* | |
DisMedical | 0.000* | 7.057 | 0.476 | 0.006* | |
绿地可达性 | ndPark | 0.004* | 1.465 | 0.721 | 0.004* |
ndRoad | 0.005* | 1.917 | -0.648 | 0.005 | |
ndAtach | 0.004* | 4.952 | -0.755 | 0.004 | |
ndElse | 0.003* | 1.094 | -0.882 | 0.004* |
表5
大连市中山区不同类型绿地可达性"
街道 | 公园绿地 | 街旁绿地 | 附属绿地 | 其他绿地 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
好(%) | 差(%) | 好(%) | 差(%) | 好(%) | 差(%) | 好(%) | 差(%) | ||||
桂林街道 | 90.24 | 0 | 85.37 | 0 | 46.34 | 4.88 | 56.10 | 0 | |||
海军广场街道 | 42.31 | 26.92 | 16.67 | 56.41 | 35.90 | 29.49 | 3.85 | 64.10 | |||
葵英街道 | 55.56 | 25 | 75 | 8.33 | 36.11 | 27.78 | 100 | 0 | |||
昆明街道 | 90.90 | 0 | 66.67 | 0 | 18.18 | 27.28 | 48.48 | 3.03 | |||
老虎滩街道 | 86.44 | 0 | 71.86 | 22.03 | 52.54 | 15.25 | 67.80 | 5.08 | |||
青泥洼桥街道 | 23.68 | 47.37 | 78.95 | 10.53 | 15.79 | 44.74 | 0 | 86.84 | |||
人民路街道 | 0 | 78.57 | 76.79 | 0 | 5.36 | 55.36 | 0 | 83.92 | |||
桃源街道 | 60.47 | 18.60 | 51.16 | 11.63 | 46.51 | 16.28 | 74.42 | 18.60 | |||
总数 | 53.65 | 26.04 | 60.94 | 17.97 | 32.81 | 28.13 | 39.06 | 36.98 |
[1] |
Zhou X, Parves Rana M.Social benefits of urban green space: A conceptual framework of valuation and accessibility measurements[J]. Management of Environmental Quality: An International Journal, 2012, 23(2): 173-189.
doi: 10.1108/14777831211204921 |
[2] |
陈秋晓, 侯焱, 吴霜. 机会公平视角下绍兴城市公园绿地可达性评价[J]. 地理科学, 2016,36(3): 375-383.
doi: 10.13249/j.cnki.sgs.2016.03.008 |
[Chen Qiuxiao,Hou Yan,Wu Shuang.Accessibility evaluation of urban park green space in Shaoxing from the perspective of opportunity equity. Scientia Geographica Sinica, 2016,36(3): 375-383.]
doi: 10.13249/j.cnki.sgs.2016.03.008 |
|
[3] |
Fan P, Xu L, Yue W et al. Accessibility of public urban green space in an urban periphery: The case of Shanghai[J]. Landscape and Urban Planning, 2017(165): 177-192.
doi: 10.1016/j.landurbplan.2016.11.007 |
[4] |
桑丽杰, 舒永钢, 祝炜平, 等. 杭州城市休闲绿地可达性分析[J]. 地理科学进展, 2013,32(6): 950-957.
doi: 10.11820/dlkxjz.2013.06.012 |
[Sang Lijie, Shu Yonggang, Zhu Weiping et al. Analysis of accessibility of urban leisure green space in Hangzhou. Progress in Geography, 2013,32(6): 950-957.]
doi: 10.11820/dlkxjz.2013.06.012 |
|
[5] |
Yang J, Li C, Li Y et al. Urban green space, uneven development and accessibility: A case of Dalian's Xigang District[J]. Chinese Geographical Science, 2015, 25(5): 644-656.
doi: 10.1007/s11769-015-0781-y |
[6] | Sotoudehnia F, Comber L. Measuring perceived accessibility to urban green space: An integration of GIS and participatory map[J]. Agile, 2011, April 18-22. |
[7] |
Coombes E, Jones A P, Hillsdon M.The relationship of physical activity and overweight to objectively measured green space accessibility and use[J]. Social Science & Medicine, 2010, 70(6): 816-822.
doi: 10.1016/j.socscimed.2009.11.020 pmid: 20060635 |
[8] |
Dai D.Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene?[J]. Landscape & Urban Planning, 2011, 102(4): 234-244.
doi: 10.1016/j.landurbplan.2011.05.002 |
[9] |
Wendel H E W, Zarger R K, Mihelcic J R. Accessibility and usability: Green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America[J]. Landscape & Urban Planning, 2012, 107(3): 272-282.
doi: 10.1016/j.landurbplan.2012.06.003 |
[10] |
Christophercoutts, Markhorner, Timothychapin. Using geographical information system to model the effects of green space accessibility on mortality in Florida[J]. Geocarto International, 2010, 25(6): 471-484.
doi: 10.1080/10106049.2010.505302 |
[11] | 尹海伟, 孔繁花, 宗跃光. 城市绿地可达性与公平性评价[J]. 生态学报, 2008,28(7): 3375-3383. |
[Yin Haiwei, Kong Fanhua, Zong Yaoguang.Evaluation of accessibility and fairness of urban green space. Acta Ecologica Sinica, 2008,28(7): 3375-3383.] | |
[12] |
杨俊, 李闯, 李永化, 等. 网络可达性与服务范围绿地空间分异研究[J]. 测绘通报, 2015(3): 40-43.
doi: 10.13474/j.cnki.11-2246.2015.0071 |
[Yang Jun, Li Chuang, Li Yonghua et al. Research on spatial differentiation of network accessibility and service scope. Bulletin of Surveying and Mapping, 2015(3): 40-43.]
doi: 10.13474/j.cnki.11-2246.2015.0071 |
|
[13] |
魏冶,修春亮,高瑞, 等. 2014. 基于高斯两步移动搜索法的沈阳市绿地可达性评价[J]. 地理科学进展, 2014, 33(4), 479-487.
doi: 10.11820/dlkxjz.2014.04.005 |
[Wei Ye, Xiu Chunliang, Gao Rui et al. Evaluation of green space accessibility of Shenyang using Gaussian based 2-step floating catchment area method. Progress in Geography, 2014,33(4), 479-487.]
doi: 10.11820/dlkxjz.2014.04.005 |
|
[14] | 张延伟,裴颖,葛全胜. 基于BDI决策的居住空间宜居性分析——以大连沙河口区为例[J]. 地理研究, 2016,35(12): 2227-2237. |
[Zhang Yanwei, Pei Ying, Ge Quansheng.Analysis of livability of living Space based on BDI Decision-Making Shahekou District of Dalian as an example. Geographical Research, 2016,35(12): 2227-2237.] | |
[15] |
Wu J, Wang M, Li W et al. Impact of urban green space on residential housing prices: Case study in Shenzhen[J]. Journal of Urban Planning and Development, 2015, 141(4): 5014023.
doi: 10.1061/(ASCE)UP.1943-5444.0000241 |
[16] | Tekel A, Akbarishahabi L.Determination of open-green space's effect on around house prices by means of hedonic price model; In example of Ankara/Botanik park[J]. Gazi University Journal of Science, 2013, 26(2): 347-360. |
[17] | 夏宾. 北京市公园绿地的房产增值效应研究[D]. 北京: 北京工业大学, 2012. |
[Xia Bin.Study on the value added effect of Beijing park green space. Beijing: Beijing University of Technology, 2012.] | |
[18] |
尹海伟, 徐建刚, 孔繁花. 上海城市绿地宜人性对房价的影响[J]. 生态学报,2009,29(8): 4492-4500.
doi: 10.3321/j.issn:1000-0933.2009.08.057 |
[Yin Haiwei, Xu Jiangang, Kong Fanhua.The effect of urban green space agreeableness on housing price in Shanghai. Acta Ecologica Sinica, 2009,29(8): 4492-4500.]
doi: 10.3321/j.issn:1000-0933.2009.08.057 |
|
[19] |
Fotheringham A S, Charlton M E, Brunsdon C.Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis[J]. Environment and Planning A, 1998, 30(11): 1905-1927.
doi: 10.1068/a301905 |
[20] |
Brunsdon C, Fotheringham A S, Charlton M.Some notes on parametric significance tests for geographically weighted regression[J]. Journal of Regional Science, 1999, 39(3): 497-524.
doi: 10.1111/0022-4146.00146 |
[21] |
Cardozo O D, García-Palomares J C, Gutiérrez J. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level[J]. Applied Geography, 2012, 34: 548-558.
doi: 10.1016/j.apgeog.2012.01.005 |
[22] |
Chiou Y, Jou R, Yang C.Factors affecting public transportation usage rate: Geographically weighted regression[J]. Transportation Research Part A: Policy and Practice, 2015, 78: 161-177.
doi: 10.1016/j.tra.2015.05.016 |
[23] | 王永明, 王美霞, 吴殿廷, 等. 贵州省乡村贫困空间格局与形成机制分析[J]. 地理科学, 2017,37(2): 217-227. |
[Wang Yongming, Wang Meixia, Wu Dianting et al. Analysis on the spatial pattern and formation mechanism of rural poverty in Guizhou Province. Scientia Geographica Sinica,2017,37(2): 217-227.] | |
[24] |
Jeon C H, Park J S, Lee J H et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors[J]. Resuscitation, 2017, 118: 21-26.
doi: 10.1016/j.resuscitation.2017.06.021 pmid: 28668700 |
[25] |
Yang J, Bao Y, Zhang Y et al. Impact of accessibility on housing prices in Dalian City of China based on a geographically weighted regression model[J]. Chinese Geographical Science,2018, 28(3): 505-515.
doi: 10.1007/s11769-018-0954-6 |
[26] |
Chen Q, Mei K, Dahlgren R A et al. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression[J]. Science of the Total Environment, 2016, 572: 450-466.
doi: 10.1016/j.scitotenv.2016.08.052 pmid: 27544350 |
[27] | 王新刚, 孔云峰. 基于时空窗口改进的时空加权回归分析——以湖北省黄石市住房价格为例[J]. 地理科学, 2015,35(5): 615-621. |
[Wang Xingang, Kong Yunfeng.Time and space weighted regression analysis based on spatio-temporal window improvement: Taking housing price in Huangshi, Hubei as an example. Scientia Geographica Sinica,2015,35(5): 615-621.] | |
[28] | 王爱, 陆林, 包善驹. 合肥市商业地价驱动因素的空间非平稳性分析[J]. 地理科学, 2017,37(10): 1535-1545. |
[Wang Ai, Lu Lin, Bao Shanju.Spatial nonstationary analysis of the driving factors of commercial land price in Hefei. Scientia Geographica Sinica, 2017,37(10): 1535-1545.] | |
[29] |
Fotheringham A S, Crespo R, Yao J.Exploring, modelling and predicting spatiotemporal variations in house prices[J]. The Annals of Regional Science, 2015, 54(2): 417-436.
doi: 10.1007/s00168-015-0660-6 |
[30] |
Shen Y, Karimi K.The economic value of streets: mix-scale spatio-functional interaction and housing price patterns[J]. Applied Geography, 2017, 79: 187-202.
doi: 10.1016/j.apgeog.2016.12.012 |
[31] |
Huang B, Wu B, Barry M.Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401.
doi: 10.1080/13658810802672469 |
[32] |
戚晓鹏, 计伟, 任红艳, 等. 淮河流域上消化道肿瘤与环境污染的模型分析[J]. 地球信息科学学报, 2012,14(4): 432-441.
doi: 10.3724/SP.J.1047.2012.00432 |
[Qi Xiaopeng, Ji Wei, Ren Hongyan et al. Model analysis of tumor and environmental pollution of upper digestive tract in Huaihe Basin. Journal of Geo-Information Science, 2012,14(4): 432-441.]
doi: 10.3724/SP.J.1047.2012.00432 |
[1] | 王绍博, 罗小龙, 郭建科, 张培刚, 顾宗倪. 高铁网络化下东北地区旅游空间结构动态演变分析[J]. 地理科学, 2019, 39(4): 568-577. |
[2] | 闫广华,苏俊如,管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J]. 地理科学, 2019, 39(1): 125-130. |
[3] | 汪德根, 孙枫. 长江经济带陆路交通可达性与城镇化空间耦合协调度[J]. 地理科学, 2018, 38(7): 1089-1097. |
[4] | 吴连霞, 赵媛, 吴开亚, 郝丽莎, 王玉娟. 中国人口老龄化区域差异及驱动机制研究[J]. 地理科学, 2018, 38(6): 877-884. |
[5] | 张童, 姚士谋, 胡伟平, 崔锋艳. 基于交通可达性的广佛都市区城市扩展的模拟与分析[J]. 地理科学, 2018, 38(5): 737-746. |
[6] | 姜磊, 周海峰, 柏玲. 外商直接投资对空气污染影响的空间异质性分析——以中国150个城市空气质量指数(AQI)为例[J]. 地理科学, 2018, 38(3): 351-360. |
[7] | 李一曼, 修春亮, 孔翔. 浙江陆路交通对区域旅游空间结构及发展的影响研究[J]. 地理科学, 2018, 38(12): 2066-2073. |
[8] | 宋伟轩, 陈培阳, 陈浩, 尹上岗. 南京城市住宅“售租比”时空格局与分异机理[J]. 地理科学, 2018, 38(12): 2084-2092. |
[9] | 周李, 张清源, 朱其静, 陆林. 广交会对星级酒店房价影响的时空分异研究——以第117和118届广交会为例[J]. 地理科学, 2017, 37(9): 1363-1373. |
[10] | 孟德友, 魏凌, 樊新生, 高超. 河南“米”字形高铁网构建对可达性及城市空间格局影响[J]. 地理科学, 2017, 37(6): 850-858. |
[11] | 柳泽, 杨宏宇, 熊维康, 陈光辉. 基于改进两步移动搜索法的县域医疗卫生服务空间可达性研究[J]. 地理科学, 2017, 37(5): 728-737. |
[12] | 褚艳玲, 杨忠振. 基于空侧货物运输系统的中国民用机场可达性评价[J]. 地理科学, 2017, 37(11): 1689-1695. |
[13] | 宋洁华, 李敏纳, 蔡舒, 王平. 海南交通可达性的测度与空间分异格局分析[J]. 地理科学, 2017, 37(10): 1507-1516. |
[14] | 王成金, 程佳佳. 中国高速公路网的可达性格局及演化[J]. 地理科学, 2016, 36(6): 803-812. |
[15] | 郭建科, 王绍博, 李博, 彭飞, 王丹丹. 哈大高铁对东北城市旅游经济联系的空间影响[J]. 地理科学, 2016, 36(4): 521-529. |
|