地理科学 ›› 2020, Vol. 40 ›› Issue (5): 814-822.doi: 10.13249/j.cnki.sgs.2020.05.016
左秀玲1,2,3(), 苏奋振2(
), 王琦2, 王晨亮2, 蒋会平2, 石伟2
收稿日期:
2019-04-10
修回日期:
2019-10-18
出版日期:
2020-05-10
发布日期:
2020-08-18
通讯作者:
苏奋振
E-mail:zuoxl@gxu.edu.cn;sufz@lreis.ac.cn
作者简介:
左秀玲(1986-),女,山东济南人,博士,讲师,主要研究方向为海洋海岸带资源环境遥感与GIS。E-mail: 基金资助:
Zuo Xiuling1,2,3(), Su Fenzhen2(
), Wang Qi2, Wang Chenliang2, Jiang Huiping2, Shi Wei2
Received:
2019-04-10
Revised:
2019-10-18
Online:
2020-05-10
Published:
2020-08-18
Contact:
Su Fenzhen
E-mail:zuoxl@gxu.edu.cn;sufz@lreis.ac.cn
Supported by:
摘要:
选取第五次耦合模式比较计划(CMIP5)模式中较适宜于南海海表面温度(SST)模拟的加拿大地球系统模式(CanESM2),并获取其在IPCC RCP2.6、RCP4.5和RCP8.5温室气体排放情景下模拟的2006-2100年南海SST数据。基于南海诸岛珊瑚礁和线性回归方法分析了RCPs情景下的珊瑚礁区夏季SST上升趋势,并基于热周指数(DHW, Degree Heating Weeks)及年白化时间指数分析了RCPs情景下的南海诸岛珊瑚礁热压力临时避难所,主要得出以下结论:① RCPs情景下,明显变暖的珊瑚礁海域均为南沙群岛;② 年白化时间不晚于全球珊瑚礁平均年白化时间的珊瑚礁像元占南海诸岛总珊瑚礁像元的比例,在RCP2.6、RCP4.5和RCP8.5情景下分别为17%、29%和42%,均分布在南沙群岛;③ RCPs情景下,较高纬度的西沙群岛、中沙群岛和南沙群岛北部为未来南海诸岛珊瑚礁热压力临时避难所。
中图分类号:
左秀玲, 苏奋振, 王琦, 王晨亮, 蒋会平, 石伟. 全球变化下中国南海诸岛珊瑚礁热压力临时避难所研究[J]. 地理科学, 2020, 40(5): 814-822.
Zuo Xiuling, Su Fenzhen, Wang Qi, Wang Chenliang, Jiang Huiping, Shi Wei. Thermal Stress Temporary Refugia Under Global Change for Coral Reefs in the South China Sea Islands[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(5): 814-822.
[1] | 王国忠. 全球气候变化与珊瑚礁问题[J]. 海洋地质前沿, 2004,20(1):8-13. |
[ Wang Guozhong. Global climatic changes and coral reefs. Marine Geology Letters, 2004,20(1):8-13.] | |
[2] | 张乔民. 我国热带生物海岸的现状及生态系统的修复与重建[J]. 海洋与湖沼, 2001,32(4):454-465. |
[ Zhang Qiaomin. Status of tropical biological coasts of China: Implications on ecosystem restoration and reconstruction. Oceanologia et Limnologia Sinica, 2001,32(4):454-465.] | |
[3] | Wilkinson C. Status of coral reefs of the world: 1998[M]. Australia: Australian Institute of Marine Science, 1998: 169-178. |
[4] | Hoeghguldberg O. Climate change, coral bleaching and the future of the world's coral reefs[J]. Marine and Freshwater Research, 1999,50(8):839-866. |
[5] |
Lough J M. 1997-1998: Unprecedented thermal stress to coral reefs?[J]. Geophysical Research Letters, 2000,27(23):3901-3904.
doi: 10.1029/2000GL011715 |
[6] | 李淑, 余克服, 陈天然, 等. 珊瑚共生虫黄藻密度结合卫星遥感分析2007年南沙群岛珊瑚热白化[J]. 科学通报, 2011,56(10):756-764. |
[ Li Shu, Yu Kefu, Chen Tianran et al. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands, South China Sea. Chinese Science Bulletin, 2011,56(10):756-764.] | |
[7] |
Mcwilliams J P, Côté I M, Gill J A et al. Accelerating impacts of temperature-induced coral bleaching in the Caribbean[J]. Ecology, 2005,86(8):2055-2060.
doi: 10.1890/04-1657 |
[8] | Worum F P, Carricart-Ganivet J P, Benson L et al. Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming[J]. Limnology & Oceanography, 2007,52(5):2317-2323. |
[9] |
Randall C J, Szmant A M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816)[J]. Biological Bulletin, 2009,217(3):269-282.
doi: 10.1086/BBLv217n3p269 pmid: 20040751 |
[10] |
Carricart-Ganivet J P, Nancy C T, Israel C O et al. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals[J]. Plos One, 2012,7(3):e32859.
doi: 10.1371/journal.pone.0032859 pmid: 22396797 |
[11] | Chen T, Li S, Yu K et al. Increasing temperature anomalies reduce coral growth in the Weizhou Island, northern South China Sea[J]. Estuarine Coastal & Shelf Science, 2013,130(3):121-126. |
[12] | 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013,35(5):1068-1076. |
[ Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI Fifth Assessment report. Journal of Glaciology and Geocryology, 2013,35(5):1068-1076.] | |
[13] |
Wallace C C, Rosen B R. Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: Implications for the evolution of modern diversity patterns of reef corals[J]. Proceedings of the Royal Society B Biological Sciences, 2006,273(1589):975.
doi: 10.1098/rspb.2005.3307 |
[14] |
Greenstein B J, Pandolfi J M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia[J]. Global Change Biology, 2010,14(3):513-528.
doi: 10.1111/gcb.2008.14.issue-3 |
[15] |
Hooidonk R V, Maynard J A, Planes S. Temporary refugia for coral reefs in a warming world[J]. Nature Climate Change, 2013,3(5):508-511.
doi: 10.1038/nclimate1829 |
[16] |
Zuo X, Su F, Wenzhou W et al. Spatial and temporal variability of thermal stress to China's Coral Reefs in South China Sea[J]. Chinese Geographical Science, 2015,25(2):159-173.
doi: 10.1007/s11769-015-0741-6 |
[17] | Soong K, Dai C, Lee C. Status of pratas atoll in South China Sea[C]// Proceedings of the 4th Conference on the Protected Areas of East Asia Taipei, 2002. |
[18] |
Li S, Yu K F, Chen T R et al. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands, South China Sea[J]. Chinese Science Bulletin, 2011,56(10):1031-1037.
doi: 10.1007/s11434-011-4390-6 |
[19] | Dai C F, Fan T Y, Wu C S. Coral fauna of Tungsha Tao (Pratas Islands)[J]. Acta Oceanographica Taiwanica, 1995,34:1-16. |
[20] | 黄晖, 尤丰, 练健生, 等. 西沙群岛海域造礁石珊瑚物种多样性与分布特点[J]. 生物多样性, 2011,19(6):710-715. |
[ Huang Hui, You Feng, Lian Jiansheng, et al. Species diversity and distribution of scleractinian coral at Xisha Islands, China. Biodiversity Science, 2011,19(6):710-715.] | |
[21] | McManus J W. The Sprately Islands: a marine park?[J]. AMBIO, 1994,23:181-186. |
[22] | 黄传江, 乔方利, 宋亚娟, 等. CMIP5模式对南海SST的模拟和预估[J]. 海洋学报, 2014(1):38-47. |
[ Huang Chuanjiang, Qiao Fangli, Song Yajuan et al. The simulation and forecast of SST in the South China Sea by CMIP5 models. Acta Oceanologica Sinica(in Chinese), 2014(1):38-47.] | |
[23] | 张芳, 董敏, 吴统文. CMIP5模式对ENSO现象的模拟能力评估[J]. 气象学报, 2014(1):30-48. |
[ Zhang Fang, Dong Min, Wu Tongwen. Evaluation of the ENSO features as done by the CMIP5 models. Acta Meterologica Sinica, 2014(1):30-48.] | |
[24] | Selig E R, Casey K S, Bruno J F. New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management[J]. Global Ecology & Biogeography, 2010,19(3):397-411. |
[25] | Hooidonk R V, Huber M. Quantifying the quality of coral bleaching predictions[J]. Coral Reefs, 2009,28(3):579-587. |
[26] | Liu G, Strong A E, Skirving W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching[J]. Eos Transactions American Geophysical Union, 2003,84(15):137-141. |
[27] | Gleeson M W, Strong A E. Applying MCSST to coral reef bleaching[J]. Advances in Space Research, 1995,16(10):151-154. |
[28] | Wang C, Wang W, Wang D et al. Interannual variability of the South China Sea associated with El Nino[J]. Journal of Geophysical Research Oceans, 2006,111:C030203. |
[29] | Chen T, Yu K, Shi Q et al. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event[J]. Chinese Science Bulletin, 2009,54(12):2107-2117. |
[30] | Riegl B, Piller W E. Possible refugia for reefs in times of environmental stress[J]. International Journal of Earth Sciences, 2003,92(4):520-531. |
[31] |
Halfar J, Godinez-Orta L, Riegl B et al. Living on the edge: High-latitude porites carbonate production under temperate eutrophic conditions[J]. Coral Reefs, 2005,24(4):582-592.
doi: 10.1007/s00338-005-0029-x |
[32] |
Tkachenko K S, Soong K. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea[J]. Marine Environmental Research, 2017,127:112-125.
doi: 10.1016/j.marenvres.2017.04.003 pmid: 28395870 |
[33] | 潘子良. 黄岩岛造礁石珊瑚共生藻密度的种间、空间差异及其生态意义[D]. 南宁:广西大学, 2017. |
[ Pan Ziliang. Interspecies and spatial diversity of Symbiodinium density in coral species from the Huangyan Island, and its ecological significance. Nanning: Guangxi University, 2017.] |
[1] | 刘云刚, 刘玄宇, 张争胜. 渔民视角下中国南海的领域构建[J]. 地理科学, 2020, 40(7): 1062-1071. |
[2] | 姜磊, 周海峰, 柏玲. 外商直接投资对空气污染影响的空间异质性分析——以中国150个城市空气质量指数(AQI)为例[J]. 地理科学, 2018, 38(3): 351-360. |
[3] | 王远东, 侯西勇, 施平, 于良巨. 海平面上升背景下环渤海海岸敏感性研究[J]. 地理科学, 2013, 33(12): 1514-1523. |
[4] | 张耀光, 刘锴, 刘桂春. 从地图看中国南海海域疆界线的形成与演进——中国南海九条断续国界线[J]. 地理科学, 2012, 32(9): 1033-1040. |
[5] | 李双双, 延军平, 万佳. 全球气候变化下秦岭南北气温变化特征[J]. 地理科学, 2012, 32(7): 853-858. |
[6] | 李宗省, 何元庆, 贾文雄, 庞洪喜, 院玲玲, 宁宝英, 刘巧, 和献中, 宋波, 张宁宁. 中国典型季风海洋性冰川区“冰川-径流” 系统的全球变化敏感性研究[J]. 地理科学, 2008, 28(2): 229-234. |
[7] | 王黎明, 关庆锋, 冯仁国, 郑景云. 全球变化视角下人地系统研究面临的几个问题探讨[J]. 地理科学, 2003, 23(4): 391-397. |
[8] | 查小春, 延军平. 全球变化下秦岭南北河流径流泥沙比较分析[J]. 地理科学, 2002, 22(4): 403-407. |
[9] | 龚子同, 陈鸿昭, 刘良梧, 骆国保. 土壤环境变化与可持续发展[J]. 地理科学, 2000, (6): 517-522. |
[10] | 赵昕奕, 张惠远. 全球气候变化影响下中国农业产量的可持续性[J]. 地理科学, 2000, 20(3): 224-228. |
[11] | 任国玉. 当前古气侯研究的几个问题[J]. 地理科学, 1999, 19(4): 368-378. |
[12] | 高峰, 朱启疆. 植被冠层多角度遥感研究进展[J]. 地理科学, 1997, 17(4): 346-354. |
[13] | 刘南威. 中国古代对南海诸岛的命名[J]. 地理科学, 1994, 14(2): 101-108,199. |
|