地理科学 ›› 2020, Vol. 40 ›› Issue (5): 823-832.doi: 10.13249/j.cnki.sgs.2020.05.017
李茂华1(), 都金康1,2(
), 李皖彤1, 李闰洁1, 吴森垚1, 王姗姗1
收稿日期:
2019-03-12
修回日期:
2019-06-25
出版日期:
2020-05-10
发布日期:
2020-08-18
通讯作者:
都金康
E-mail:li7@foxmail.com;njudjk@163.com
作者简介:
李茂华(1994-),男,四川德阳人,硕士研究生,主要从事环境遥感与GIS应用方面研究。E-mail:maohua. 基金资助:
Li Maohua1(), Du Jinkang1,2(
), Li Wantong1, Li Runjie1, Wu Senyao1, Wang Shanshan1
Received:
2019-03-12
Revised:
2019-06-25
Online:
2020-05-10
Published:
2020-08-18
Contact:
Du Jinkang
E-mail:li7@foxmail.com;njudjk@163.com
Supported by:
摘要:
采用1982-2015年的GLASS-LAI (Global Land Surface Satellite-Leaf Area Index )遥感数据和CRU(Climatic Research Unit)气象数据,利用Mann-Kendall趋势法分析了过去34 a全球9种植被的叶面积指数(Leaf Area Index,LAI)时空变化特征;使用相关分析和逐步线性回归分别探讨了全球9种植被LAI与降水、温度的年际与月关系。结果表明:① 全球植被总体呈现绿化趋势,其中变化较大的是草原、稀树草原、常绿阔叶林和多树草原;在植被生长的绿化和褐化趋势中,面积占比最大的植被类型均为草原,说明草原生态系统易受环境因素的影响。② 从年际关系看,草原和开放灌丛的LAI与年均降水多呈正相关关系,而温度对不同纬度植被的LAI存在正负2种影响。其原因为温度升高对中低纬度的植被生长有抑制作用,而对高纬度地区植被生长有促进作用。③ 从年内关系看,南半球降水和温度共同作用于植被的生长;而北半球除常绿阔叶林的生长与温度关系更为紧密外,其它类型植被的生长主要受降水影响。④ 逐步线性回归结果表明,当月温度的升高对常绿阔叶林、混交林和农作物的生长具有促进作用,而多树草原和草原2种植被的生长受当月降水的影响最为显著。
中图分类号:
李茂华, 都金康, 李皖彤, 李闰洁, 吴森垚, 王姗姗. 1982-2015年全球植被变化及其与温度和降水的关系[J]. 地理科学, 2020, 40(5): 823-832.
Li Maohua, Du Jinkang, Li Wantong, Li Runjie, Wu Senyao, Wang Shanshan. Global Vegetation Change and Its Relationship with Precipitation and Temperature Based on GLASS-LAI in 1982-2015[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(5): 823-832.
表1
1982-2015年全球9种植被类型年均LAI显著变化的占比(%)"
下降 P < 0.01 | 下降 0.01< P<0.05 | 上升 P<0.01 | 上升0.01< P<0.05 | 总计 | |
---|---|---|---|---|---|
常绿阔叶林 | 0.45 | 0.24 | 9.99 | 1.56 | 12.24 |
混交林 | 0.23 | 0.14 | 5.94 | 0.80 | 7.11 |
郁闭灌丛 | 0.08 | 0.04 | 0.09 | 0.04 | 0.24 |
开放灌丛 | 1.82 | 1.42 | 6.22 | 2.20 | 11.67 |
多树草原 | 1.08 | 0.56 | 9.91 | 1.60 | 13.15 |
稀树草原 | 1.82 | 1.01 | 10.58 | 2.77 | 16.19 |
草原 | 2.98 | 1.93 | 17.54 | 4.92 | 27.37 |
农作物 | 0.69 | 0.41 | 8.15 | 1.91 | 11.16 |
农作物和自然 植被混合 | 0.06 | 0.05 | 0.62 | 0.14 | 0.87 |
总计 | 9.21 | 5.81 | 69.03 | 15.95 | 100.00 |
表2
1982-2015年全球9种植被年均LAI和降水显著相关的占比(%)"
负相关 P < 0.01 | 负相关 0.01< P < 0.05 | 正相关 P < 0.01 | 正相关 0.01< P < 0.05 | 总计 | |
---|---|---|---|---|---|
常绿阔叶林 | 0.11 | 0.32 | 1.05 | 2.46 | 3.95 |
混交林 | 0.08 | 0.37 | 0.25 | 0.97 | 1.67 |
郁闭灌丛 | 0.00 | 0.00 | 0.52 | 0.23 | 0.74 |
开放灌丛 | 0.27 | 0.91 | 12.69 | 5.29 | 19.16 |
多树草原 | 0.41 | 0.72 | 1.19 | 2.28 | 4.59 |
稀树草原 | 0.11 | 0.48 | 5.21 | 5.44 | 11.24 |
草原 | 0.84 | 1.26 | 29.14 | 14.17 | 45.41 |
农作物 | 0.08 | 0.25 | 6.78 | 5.56 | 12.67 |
农作物和自然 植被混合 | 0.01 | 0.04 | 0.18 | 0.33 | 0.57 |
总计 | 1.91 | 4.36 | 57.01 | 36.72 | 100.00 |
表3
1982-2015年全球9种植被年均LAI和温度显著相关的占比(%)"
负相关 P< 0.01 | 负相关 0.01< P < 0.05 | 正相关 P < 0.01 | 正相关 0.01< P < 0.05 | 总计 | |
---|---|---|---|---|---|
常绿阔叶林 | 0.67 | 0.46 | 10.52 | 4.36 | 16.02 |
混交林 | 0.04 | 0.16 | 2.50 | 2.68 | 5.39 |
郁闭灌丛 | 0.14 | 0.15 | 0.00 | 0.03 | 0.32 |
开放灌丛 | 4.72 | 3.28 | 4.25 | 3.58 | 15.84 |
多树草原 | 0.31 | 0.47 | 5.54 | 4.51 | 10.83 |
稀树草原 | 1.20 | 1.41 | 7.88 | 5.66 | 16.14 |
草原 | 3.66 | 3.93 | 9.28 | 8.01 | 24.88 |
农作物 | 0.45 | 0.88 | 4.61 | 3.76 | 9.69 |
农作物和自然 植被混合 | 0.04 | 0.05 | 0.43 | 0.39 | 0.90 |
总计 | 11.23 | 10.78 | 45.01 | 32.98 | 100.00 |
表4
1982-2015年全球9种植被月均LAI和多种气候因子的逐步线性回归拟合"
植被类型 | 逐步线性回归 | R2 | F |
---|---|---|---|
常绿阔叶林 | LAI=0.575T0+0.328T3+ 0.005P3-19.077 | 0.343 | 71.354 |
混交林 | LAI=0.1T0+0.058T3+0.036P0-0.059T1-0.011P2-0.02P3+0.38 | 0.878 | 484.502 |
郁闭灌丛 | LAI=0.011T3+0.002P0+0.002P1+0.336 | 0.479 | 125.039 |
开放灌丛 | LAI=0.016T3+0.006P0-0.034T0-0.02T1-0.011P2-0.006P1+1.36 | 0.889 | 542.541 |
多树草原 | LAI=0.031P0+0.007P1-0.072T1-0.034T0-0.018P3-0.009P2+2.44 | 0.879 | 489.831 |
稀树草原 | LAI=0.053T3+0.012P0-0.072T0-0.028T1-0.023T2-0.014P2-0.007P3-0.005P1+3.845 | 0.722 | 131.927 |
草原 | LAI=0.008P0-0.06T0-0.011P3-0.007P2-0.007P1+2.367 | 0.671 | 165.877 |
农作物 | LAI=0.112T0+0.026T3+0.008P0-0.008P1-0.003P2-1.251 | 0.892 | 669.094 |
农作物和自然植被混合 | LAI=0.155T0+0.005P0-0.052T1-0.002P3-0.531 | 0.742 | 291.878 |
[1] | Foley J A, Levis S, Costa M H et al. Incorporating dynamic vegetation cover within global climate models[J]. Ecological Applications, 2000,10(6):1620-1632. |
[2] | Fischlin A, Midgley G F, Hughs L et al. Ecosystems, their properties, goods and services[M]. Cambridge, Uk: Cambridge University Press, 2007. |
[3] | 谢今范, 毛德华, 任春颖. 植被-气候关系遥感分析研究进展[J]. 东北师大学报(自然科学版), 2011,43(3):145-150. |
[ Xie Jinfan, Mao Dehua, Ren Chunying. An overview of researches in relations between vegetationand climate based on remote sensing. Journal of Northeast Normal University(Natural Science Edition), 2011,43(3):145-150.] | |
[4] |
Nemani R R, Keeling C D, Hashimoto H et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003,300(5625):1560-1563.
doi: 10.1126/science.1082750 pmid: 12791990 |
[5] |
Ichii K, Kawabata A, Yamaguchi Y. Global correlation analysis for NDVI and climatic variables and NDVI trends:1982-1990[J]. International Journal Remote Sensing, 2002,23(18):3873-3878.
doi: 10.1080/01431160110119416 |
[6] |
Gao Q, Schwartz M W, Zhu W et al. Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors[J]. Remote Sensing, 2016,8(5):384-396.
doi: 10.3390/rs8050384 |
[7] | 郑艺, 张丽, 周宇, 等. 1982-2012 年全球干旱区植被变化及驱动因子分析[J]. 干旱区研究, 2017(1):59-66. |
[ Zheng Yi, Zhang Li, Zhou Yu et al. Vegetation change and its driving factors in global drylands during the period of 1982-2012. Arid Zone Research, 2017(1):59-66.] | |
[8] |
Fensholt R, Langanke T, Rasmussen K et al. Greenness in semi-arid areas across the globe 1981-2007—An earth observing satellite based analysis of trends and drivers[J]. Remote Sensing of Environment, 2012,121:144-158.
doi: 10.1016/j.rse.2012.01.017 |
[9] |
Forzieri G, Alkama R, Miralles D G et al. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth[J]. Science, 2017,356(6343):1180-1184.
doi: 10.1126/science.aal1727 pmid: 28546316 |
[10] | 于德永, 潘耀忠, 姜萍, 等. 东亚地区植被净第一性生产力对气候变化的时空响应[J]. 北京林业大学学报, 2005,27(2):96-101. |
[ Yu Deyong, Pan Yaozhong, Jiang Ping et al. Spatial and temporal response of NPP of east Asian vegetations to climate changes. Journal of Beijing Forestry University, 2005,27(2):96-101.] | |
[11] | Piao S L, Fang J Y, Ji W. Variation in a satellite-based vegetation index in relation to climate in China[J]. Journal of Vegetation Science, 2004,15(2):219-226. |
[12] | 李月臣, 宫鹏, 刘春霞, 等. 北方13省1982-1999年植被变化及其与气候因子的关系[J]. 资源科学, 2006,28(2):109-117. |
[ Li Yuechen, Gong Peng, Liu Chunxia et al. Vegetation cover changes and correlation with climatic factors in Northern China during 1982-1999. Resources Science, 2006,28(2):109-117.] | |
[13] | 方利, 王文杰, 蒋卫国, 等. 2000-2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应[J]. 地理科学, 2017,37(11):1745-1754. |
[ Fang Li, Wang Wenjie, Jiang Weiguo et al. Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang Basin of China from 2000 to 2014. Scientia Geographica Sinica, 2017,37(11):1745-1754.] | |
[14] | Zhu Z, Bi J, Pan Y et al. Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011[J]. Remote Sensing, 2013,5(2):927-948. |
[15] |
Pettorelli N, Vik J O, Mysterud A et al. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 2005,20(9):503-510.
doi: 10.1016/j.tree.2005.05.011 pmid: 16701427 |
[16] |
Xiao Z, Liang S, Wang J et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):209-223.
doi: 10.1109/TGRS.2013.2237780 |
[17] | 梁博毅, 刘素红, 瞿瑛, 等. 利用GLASS LAI 数据分析 1982-2012 年亚马逊热带雨林变化[J]. 遥感学报, 2016,20(1):149-156. |
[ Liang Boyi, Liu Suhong, Qu Ying et al. Changes in the Amazon rainforest from 1982 to 2012 using GLASS LAI data. Journal of Remote Sensing, 2016,20(1):149-156.] | |
[18] | Zhu Z, Piao S, Myneni R B et al. Greening of the earth and its drivers[J]. Nature Climate Change, 2016,6(8):791-795. |
[19] |
Zhao X, Liang S. Liu S. et al. Global Land Surface Satellite (GLASS) remote sensing data processing system and products[J]. Remote Sensing, 2013,5(5):2436-2450.
doi: 10.3390/rs5052436 |
[20] | Fang H, Jiang C, Li W et al. Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties[J]. Journal of Geophysical Research: Biogeosciences, 2013,118(2):529-548. |
[21] | Fensholt R, Rasmussen K, Nielsen T T et al. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data[J]. Remote Sensing of Environment, 2009,113(9):1886-1898. |
[22] | Hijmans R J, Cameron S E, Parra J L et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005,25(15):1965-1978. |
[23] |
Shushi Peng, Shilong Piao, Philippe, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 2013,501(7465):88-92.
doi: 10.1038/nature12434 pmid: 24005415 |
[24] |
De Jong R, Schaepman M E, Furrer R et al. Spatial relationship between climatologies and changes in global vegetation activity[J]. Global Change Biology, 2013,19(6):1953-1964.
doi: 10.1111/gcb.12193 pmid: 23512439 |
[25] | Harris I P, Jones P D, Osborn T J. et al. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset[J]. International Journal of Climatology, 2014 34(3):623-642. |
[26] | Hansen M C, Defries R S, Townshend J R G et al. Global land cover classi cation at 1km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000,21(6-7):1331-1364. |
[27] | Kendall M G. A new measure of rank correlation[J]. Biometrika, 1938,30(1/2):81-93. |
[28] | De Jong R, de Bruin S, de Wit A et al. Analysis of monotonic greening and browning trends from global NDVI time-series[J]. Remote Sensing of Environment, 2011,115(2):692-702. |
[29] | Benesty J, Chen J, Huang Y et al. Pearson correlation coefficient, Noise reduction in speech processing[M]. Berlin, Heidelberg:Springer, 2009: 1-4. |
[30] | Badreldin N, Sanchez-Azofeifa A. Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the Coal Valley Mine, Alberta, Canada[J]. Remote Sensing, 2015,7(3):2832-2849. |
[31] |
Zhang Y, Dong S, Gao Q et al. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2016,562:353-363.
doi: 10.1016/j.scitotenv.2016.03.221 pmid: 27100015 |
[32] | 马有绚. 干旱半干旱地区植被指数与气候的关系[D]. 兰州: 兰州大学, 2016. |
[ Ma Youxun. The relationship between vegetation index and cliamate factors in arid and semi-arid area. Lanzhou: Lanzhou University, 2016.] | |
[33] |
张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014,38(9):1008-1018.
doi: 10.3724/SP.J.1258.2014.00095 |
[ Zhang Bin, Zhu Jianjun, Liu Huamin et al. Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 2014,38(9):1008-1018.] | |
[34] | 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015,26(1):1-11. |
[ Guo Jianping. Advances in impacts of climate change on agricultural production in China. Journal of Applied Meteorological Science, 2015,26(1):1-11.] | |
[35] | Gamon J A, Field C B, Goulden M L et al. Relationships between NDVI, canopy structure, and photosynjournal in three Californian vegetation types[J]. Ecological Applications, 1995,5(1):28-41. |
[36] | 蒙继华. 农作物长势遥感监测指标研究[D]. 北京:中国科学院研究生院(遥感应用研究所), 2006. |
[ Meng Jihua. Research to crop growth monitoring indicators with remote sensing. Beijing: Graduate University of Chinese Academy of Sciences(Institute of Remote Sensing Applications Chinese Academy of Sciences), 2006. ] | |
[37] | Chen J M, Black T A. Defining leaf area index for non-flat leaves[J]. Plant Cell and Environment, 1992,15(4):421-429. |
[38] | Xiao Z, Liang S, Wang J et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):209-223. |
[39] |
Xiao Z, Liang S, Wang J et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(9):1-18.
doi: 10.1109/TGRS.2015.2471975 |
[40] |
Liang S, Zhao X, Liu S et al. A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies[J]. International Journal of Digital Earth, 2013,6(sup1):5-33.
doi: 10.1080/17538947.2013.805262 |
[1] | 杨若子, 邢佩, 杜吴鹏, 党冰, 轩春怡, 熊飞麟. 1961—2017年华北地区降水气候特征分析[J]. 地理科学, 2020, 40(9): 1573-1583. |
[2] | 周旗, 张海宁, 任源鑫. 1961-2016年渭河流域极端降水事件研究[J]. 地理科学, 2020, 40(5): 833-841. |
[3] | 李明, 葛晨昊, 邓宇莹, 王贵文, 柴旭荣. 黄土高原气象干旱和农业干旱特征及其相互关系研究[J]. 地理科学, 2020, 40(12): 2105-2114. |
[4] | 王智颖, 臧淑英, 周道玮, 李苗. 1957~2016年中国农业界限温度时空变化研究[J]. 地理科学, 2020, 40(1): 137-148. |
[5] | 黄一民,赵日梅,宋献方,何清华,杨柳,章新平. 台风“海马”对洞庭湖流域降水同位素的影响研究[J]. 地理科学, 2019, 39(7): 1184-1190. |
[6] | 于琛,胡德勇,张旸,曹诗颂,段欣,张亚妮. 近20年京津唐主体城区地表热场空间特征变化分析[J]. 地理科学, 2019, 39(6): 1016-1024. |
[7] | 李明, 胡炜霞, 王贵文, 柴旭荣, 张莲芝. 基于Copula函数的中国东部季风区干旱风险研究[J]. 地理科学, 2019, 39(3): 506-515. |
[8] | 闫广华,苏俊如,管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J]. 地理科学, 2019, 39(1): 125-130. |
[9] | 叶许春, 许崇育, 张丹, 李相虎. 长江中下游夏季降水变化与亚洲夏季风系统的关系[J]. 地理科学, 2018, 38(7): 1174-1182. |
[10] | 余方琳, 翟石艳, 王铮, 宋根鑫, 李亚婷, 贺楠. 基于SPI的1960~2012年西南地区水稻生长季干旱时空特征分析[J]. 地理科学, 2018, 38(5): 808-817. |
[11] | 吴燕锋, 章光新. 松花江区气象水文干旱演变特征[J]. 地理科学, 2018, 38(10): 1731-1739. |
[12] | 范科科, 段利民, 张强, 史培军, 刘剑宇, 顾西辉, 孔冬冬. 基于多种高分辨率卫星数据的TRMM降水数据降尺度研究——以内蒙古地区为例[J]. 地理科学, 2017, 37(9): 1411-1421. |
[13] | 顾西辉, 张强, 孔冬冬, 刘剑宇, 范科科. 中国年和季节极端降水时空特征 及极值分布函数上尾部性质[J]. 地理科学, 2017, 37(6): 929-937. |
[14] | 黄一民, 宋献方, 章新平, 何清华, 韩青, 李强. 洞庭湖流域降水同位素与ENSO关系研究[J]. 地理科学, 2017, 37(5): 792-798. |
[15] | 郑江禹, 张强, 史培军, 顾西辉, 郑泳杰. 珠江流域多尺度极端降水时空特征及影响因子研究[J]. 地理科学, 2017, 37(2): 283-291. |
|