地理科学 ›› 2020, Vol. 40 ›› Issue (6): 928-938.doi: 10.13249/j.cnki.sgs.2020.06.008
收稿日期:
2019-07-30
出版日期:
2020-06-01
发布日期:
2020-12-07
通讯作者:
薛德升
E-mail:dqh1120@sina.com;eesxds@mail.sysu.edu.cn
作者简介:
邓清华(1976−),女,四川大竹人,博士研究生,主要从事信息化与城市空间研究。E-mail: 基金资助:
Deng Qinghua1,2(), Xue Desheng1,*(
), Gong Jianzhou2
Received:
2019-07-30
Online:
2020-06-01
Published:
2020-12-07
Contact:
Xue Desheng
E-mail:dqh1120@sina.com;eesxds@mail.sysu.edu.cn
Supported by:
摘要:
基于广州市居民网络购物行为调查问卷和电子地图兴趣点(POI)数据,从全市和不同区位2个空间尺度,运用有序多分类Logistic回归模型探讨了个人社会经济属性、商品特征、空间环境及物流快递4类因素对居民网购频率的影响。研究发现:① 影响因素在不同空间尺度和不同区位产生作用的因子个数、作用强度和作用方向存在差异。影响因子数量在全市域范围最多,远郊区最少。各因子总体上在近郊区和全市域作用强度大,在远郊区最弱。退货服务重要性在近郊区和中心区作用方向相反;② 部分空间环境因子对网购频率有影响,城市化水平、商业中心可达性在全市域范围有影响,居住地城市化水平越高、离商业中心距离越近的居民网购频率越高,支持了创新扩散假说。快递点数量在中心区有影响,居住地快递点数量越多的居民网购频率越高。其它空间环境因子没有显著影响。③ 个人社会经济属性因素对网购频率影响较大,性别、年龄是最重要的影响因子,其次是学历、职业,月收入影响最小。商品特征、快递物流因素各因子在不同区域对网购频率产生较大影响。
中图分类号:
邓清华, 薛德升, 龚建周. 广州市居民网络购物频率的影响因素及其空间差异[J]. 地理科学, 2020, 40(6): 928-938.
Deng Qinghua, Xue Desheng, Gong Jianzhou. Influencing Factors of Online Shopping Frequency of Residents and Spatial Differences of These Factors in Guangzhou City[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(6): 928-938.
表 1
购者基本情况统计"
样本属性 | 样本 数 (个) | 比例 (%) | 样本属性 | 样本 数 (个) | 比例 (%) | |||
性别 | 男 | 546 | 47.2 | 职业 | 机关/事业单位人员 | 111 | 9.5 | |
女 | 610 | 52.8 | 企业员工 | 305 | 26.4 | |||
年龄 (岁) | 15~24 | 463 | 40.0 | 私营业者 | 144 | 12.5 | ||
25~34 | 358 | 31.0 | 在校学生 | 446 | 38.6 | |||
35~44 | 208 | 18.0 | 自由职业者 | 82 | 7.1 | |||
≥45 | 127 | 11.0 | 农民 | 5 | 0.4 | |||
学历 | 初中及以下 | 77 | 6.7 | 退休人员 | 15 | 1.3 | ||
高中或高职 | 236 | 20.4 | 其他 | 48 | 4.2 | |||
大专或本科 | 792 | 68.5 | 居住 区位 | 中心区 | 408 | 35.3 | ||
研究生 | 51 | 4.4 | 近郊区 | 432 | 37.4 | |||
月收 入 (104 元) | <0.3 | 505 | 43.7 | 远郊区 | 316 | 27.3 | ||
0.3~0.6 | 299 | 25.8 | ||||||
0.6~1.0 | 224 | 19.4 | ||||||
1.0~1.5 | 88 | 7.6 | ||||||
>1.5 | 40 | 3.5 |
表 3
影响居民网购频率的因素"
因素 | 自变量 | 符号 | 赋值说明 | 变量分类 |
个人 社会 经济 属性 | 性别 | X1 | 1=男;0=女 | 二分类 |
年龄 | X2 | 1=15~24岁;2=25~34岁;3=35~44岁;4=45岁以上 | 多分类 | |
学历 | X3 | 1=初中及以下;2=高中或高职;3=大专或本科;4=研究生 | 多分类 | |
职业 | X4 | 1=其他;2=企业员工;3=私营业者;4=在校学生;5=自由职业者;6=农民;7=退休人员;8=机关/事业单位人员 | 多分类 | |
月收入(元) | X5 | 1=0.3×104以下;2=0.3×104~0.6×104;3=0.6×104~1.0×104;4=1.0×104~1.5×104;5=1.5×104以上 | 多分类 | |
商品 特征 | 商品价格重要性 | X6 | 1=不太重要;2=一般;3=比较重要 | 多分类 |
商品种类重要性 | X7 | 1=不太重要;2=一般;3=比较重要 | 多分类 | |
实体店无售重要性 | X8 | 1=不太重要;2=一般;3=比较重要 | 多分类 | |
退货服务重要性 | X9 | 1=不太重要;2=一般;3=比较重要 | 多分类 | |
城市化水平 | X10 | 居住地所处行政区城市化水平,1=低;2=较低;3=中等;4=较高;5=高 | 多分类 | |
空间 环境 | 实体商店数量(个) | X11 | 居住地1 km范围内实体商店数量 | 连续 |
实体商店业态种类(种) | X12 | 居住地1 km范围内实体商店的业态种类 | 连续 | |
交通站点数量(个) | X13 | 居住地1 km范围内公交站、地铁站数量 | 连续 | |
商业中心可达性(km) | X14 | 离最近的商业中心距离 | 连续 | |
物流 快递 | 快递点数量(个) | X15 | 居住地1 km范围内快递点数量 | 连续 |
运费占交易额比例 | X16 | 1=1/10以下;2=1/5以下;3=2/5以下;4=2/5以上 | 多分类 | |
快递时间接受度 | X17 | 1=1~2 d;2=3~4 d;3=5~6 d;4=7 d以上 | 多分类 |
表 4
有序多分类Logistic回归模型结果"
自变量 | 全市 | 远郊区 | 近郊区 | 中心区 | ||||||||||
B | Exp(B) | B | Exp(B) | B | Exp(B) | B | Exp(B) | |||||||
个人社会 经济属性 | 性别 | x1 | 女性 | 0.679*** | 1.972 | 0.422** | 1.525 | 0.397** | 1.487 | 0.921*** | 2.512 | |||
年龄(岁) | x2 | 15~24 | 2.323*** | 10.206 | 2.443*** | 11.508 | 2.217*** | 9.180 | ||||||
25~34 | 1.629*** | 5.099 | 2.018*** | 7.523 | 1.185*** | 3.271 | ||||||||
35~44 | 0.712*** | 2.038 | 1.271*** | 3.564 | ||||||||||
学历 | x3 | 初中及以下 | ?0.938** | 0.391 | ?1.853*** | 0.157 | ?0.99* | 0.372 | ||||||
高中或高职 | ?0.570* | 0.566 | ?1.26** | 0.284 | ||||||||||
大专或本科 | ?0.871* | 0.419 | ||||||||||||
职业 | x4 | 在校学生 | ?0.618** | 0.539 | ?1.376*** | 0.253 | ?1.028** | 0.358 | ||||||
其他 | 0.839** | 2.314 | 2.676* | 14.527 | ||||||||||
月收入(104元) | x5 | 1.0~1.5 | 0.848** | 2.335 | ||||||||||
商品特征 | 商品价格重要性 | x6 | 不太重要 | ?1.536** | 0.215 | |||||||||
商品种类重要性 | x7 | 一般 | ?1.048*** | 0.351 | ||||||||||
实体店无售重要性 | x8 | 不太重要 | ?1.555*** | 0.211 | ||||||||||
一般 | ?0.394*** | 0.674 | ?0.477* | 0.621 | ||||||||||
退货服务重要性 | x9 | 不太重要 | ?0.615** | 0.541 | 0.566** | 1.761 | ||||||||
空间环境 | 城市化水平 | x10 | 低 | ?0.507** | 0.602 | |||||||||
商业中心可达性(km) | x14 | ?0.029** | 0.971 | |||||||||||
快递点数量(个) | x15 | 0.003** | 1.003 | |||||||||||
物流快递 | 运费占交易额比例 | x16 | 1/10以下 | ?1.456*** | 0.233 | ?2.565*** | 0.077 | |||||||
1/5以下 | ?1.368** | 0.255 | ?2.417** | 0.089 | ||||||||||
2/5以下 | ?1.360** | 0.257 | ?2.802*** | 0.061 | ||||||||||
快递时间接受度(d) | x17 | 1~2 | ?0.877** | 0.416 | ?1.303** | 0.272 | ||||||||
3~4 | ?0.845* | 0.43 | ||||||||||||
5~6 | ?0.779** | 0.459 | ?0.998* | 0.369 | ||||||||||
样本数量 | 1156 | 316 | 432 | 408 | ||||||||||
似然比检验 | P=0 | P=0 | P=0 | P=0 | ||||||||||
平行线检验 | P= 0.995 | P= 0.995 | P=1.000 | P=0.948 |
[1] | 中国互联网络信息中心.第43次中国互联网络发展状况统计报告[EB/OL].2019-02-28. http://www.cac.gov.cn/2019-02/28/c_1124175677.htm. |
China Internet Network Information Center. The 43rd statistical report on the development of internet in China.2019-02-28. http://www.cac.gov.cn/2019-02/28/c_11241-75677.htm. | |
[2] | 经济日报.去年全国网上零售额超九万亿元农村电商迅猛发展[N/OL].2019-02-22. http://www.gov.cn/guowuyuan/2019-02/22/content_5367564.htm. |
Economic Daily.The national online retail sales exceeded 9 trillion yuan, and rural e-commerce developed rapidly last year.2019-02-22. http://www.gov.cn/guowuyuan/2019-02/22/content_5367564.htm. | |
[3] | Cao X, Mokhtarian P L. The intended and actual adoption of online purchasing: A brief review of recent literature[R]. Davis, California: Institute of Transportation Studies, University of California, 2005: 160-169. |
[4] | Bigne E, Ruiz C, Sanz S The impact of internet user shopping patterns and demographics on consumer mobile buying behaviour[J]. Journal of Electronic Commerce Research, 2005. 6 (3): 193- 210. |
[5] |
Sim L L, Koi S M Singapore's Internet shoppers and their impact on traditional shopping patterns[J]. Journal of Retailing and Consumer Services, 2002. 9 (2): 115- 124.
doi: 10.1016/S0969-6989(01)00029-7 |
[6] |
Rahman M K, Jalil M A, Abdullah-Al-Mamun et al Factors influencing malaysian consumers’ intention towards e-shopping[J]. Journal of Applied Sciences, 2014. 14 (18): 2119- 2128.
doi: 10.3923/jas.2014.2119.2128 |
[7] | Ganapathi R A study on factors affecting online shopping behavior of consumers in Chennai[J]. Journal of Management Research and Analysis, 2015. 2 (2): 123- 126. |
[8] |
Akhter S H Digital divide and purchase intention: Why demographic psychology matters[J]. Journal of Economic Psychology, 2003. 24 (3): 321- 327.
doi: 10.1016/S0167-4870(02)00171-X |
[9] | Kooti F, Lerman K, Aiello L M et al. Portrait of an online shopper: Understanding and predicting consumer behavior[C]. San Fransisco, USA: Proceedings of the Ninth ACM International Conference onWeb Search and Data Mining, 2016. |
[10] |
Eastin M S Diffusion of e-commerce: An analysis of the adoption of four e-commerce activities[J]. Telematics and Informatics, 2002. 19 (3): 251- 267.
doi: 10.1016/S0736-5853(01)00005-3 |
[11] |
白硕, 杨永春, 史坤博 成都市居民网络消费行为特征分析——基于O2O与C2C电子商务的对比视角[J]. 世界地理研究, 2018. 27 (5): 71- 81.
doi: 10.3969/j.issn.1004-9479.2018.05.008 |
Bai Shuo, Yang Yongchun, Shi Kunbo Analysis on characteristics of e-shopping behavior of Chengdu residents[J]. World Regional Studies, 2018. 27 (5): 71- 81.
doi: 10.3969/j.issn.1004-9479.2018.05.008 |
|
[12] | 杜晓娟, 甄峰, Cao Jason 南京市居民购物行为的影响因素和空间效应——基于四种商品的对比研究[J]. 地理研究, 2017. 36 (5): 957- 971. |
Du Xiaojuan, Zhen Feng, Cao Jason Influential factors and spatial effects of individuals' shopping behavior in Nanjing: A comparative study on four types of goods[J]. Geographical Research, 2017. 36 (5): 957- 971. | |
[13] |
Koyuncu C, Bhattacharya G The impacts of quickness, price, payment risk, and delivery issues on on-line shopping[J]. Journal of Socio-Economics, 2004. 33 (2): 241- 251.
doi: 10.1016/j.socec.2003.12.011 |
[14] | Shang R, Chen Y, Shen L Extrinsic versus intrinsic motivations for consumers to shop on-line[J]. Information & Management, 2005. 42 (3): 401- 413. |
[15] |
Corbitt B J, Thanasankit T, Yi H Trust and e-commerce: A study of consumer perceptions[J]. Electronic Commerce Research and Applications, 2003. 2 (3): 203- 215.
doi: 10.1016/S1567-4223(03)00024-3 |
[16] |
Forsythe S M, Shi B Consumer patronage and risk perceptions in Internet shopping[J]. Journal of Business Research, 2003. 56 (11): 867- 875.
doi: 10.1016/S0148-2963(01)00273-9 |
[17] |
Farag S, Dijst M, Lanzendorf M Exploring the use of e-shopping and its impact on personal travel behavior in the Netherlands[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003. 1858 (1): 47- 54.
doi: 10.3141/1858-07 |
[18] | Chang M K, Cheung W M, Lai V S Literature derived reference models for the adoption of online shopping[J]. Information & Management, 2005. 42 (4): 543- 559. |
[19] | 汪明峰, 卢姗, 袁贺 网上购物对不同区位消费者行为的影响——市区和郊区的比较[J]. 城市规划, 2013. 37 (11): 84- 88+95. |
Wang Mingfeng, Lu Shan, Yuan He Influences of online shopping on consumer behaviors at different shopping locations: A comparative study on city center and suburb[J]. City Planning Review, 2013. 37 (11): 84- 88+95. | |
[20] |
Cao X J E-Shopping, spatial attributes, and personal travel: A review of empirical studies[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009. 2135 (1): 160- 169.
doi: 10.3141/2135-19 |
[21] |
Cao X J, Chen Q, Choo S Geographic distribution of e-shopping: Application of structural equation models in the twin cities of Minnesota[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013. 2383 (1): 18- 26.
doi: 10.3141/2383-03 |
[22] |
Zhu S, Chen J The digital divide in individual e-commerce utilization in China[J]. Information Development, 2013. 29 (1): 69- 80.
doi: 10.1177/0266666912450168 |
[23] |
Loo B P Y, Wang B Factors associated with home-based e-working and e-shopping in Nanjing, China[J]. Transportation, 2018. 45 (2): 365- 384.
doi: 10.1007/s11116-017-9792-0 |
[24] |
刘学, 甄峰, 王波, 等 时空制约对南京城市居民网上购物频率的影响研究[J]. 世界地理研究, 2016. 25 (5): 92- 100.
doi: 10.3969/j.issn.1004-9479.2016.05.010 |
Liu Xue, Zhen Feng, Wang Bo et al The impact of space-time constraints on frequency of e-shopping behaviour: Evidence from Nanjing, China[J]. World Regional Studies, 2016. 25 (5): 92- 100.
doi: 10.3969/j.issn.1004-9479.2016.05.010 |
|
[25] |
Shi K, De Vos J, Yang Y et al Does e-shopping replace shopping trips? Empirical evidence from Chengdu, China[J]. Transportation Research Part A: Policy and Practice, 2019. 122, 21- 33.
doi: 10.1016/j.tra.2019.01.027 |
[26] |
Krizek K J, Li Y, Handy S L Spatial attributes and patterns of use in household-related information and communications technology activity[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005. 1926 (1): 252- 259.
doi: 10.1177/0361198105192600129 |
[27] |
Weltevreden J W J, Rietbergen T V E-Shopping versus city centre shopping: The role of perceived city centre attractiveness[J]. Tijdschrift Voor Economische En Sociale Geografie, 2007. 98 (1): 68- 85.
doi: 10.1111/j.1467-9663.2007.00377.x |
[28] |
Ren F, Kwan M P The impact of geographic context on e-shopping behavior[J]. Environment and Planning B: Planning and Design, 2009. 36 (2): 262- 278.
doi: 10.1068/b34014t |
[29] |
Lee R J, Sener I N, Handy S L Picture of online shoppers: Specific focus on Davis, California[J]. Transportation Research Record: Journal of the Transportation Research Board, 2015. 2496 (1): 55- 63.
doi: 10.3141/2496-07 |
[30] |
Lee R J, Sener I N, Mokhtarian P L et al Relationships between the online and in-store shopping frequency of Davis, California residents[J]. Transportation Research Part A: Policy and Practice, 2017. 100, 40- 52.
doi: 10.1016/j.tra.2017.03.001 |
[31] | Mchugh E C. Does location influence consumer behaviour? Comparing rural and urban use of online shopping in Wales[J]. Reinvention: An International Journal of Undergraduate Research, 2014, 7(1). https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume7issue1/mchugh/. |
[32] |
Wiegandt C, Baumgart S, Hangebruch N et al Determinanten des online-Einkaufs-eine empirische Studie in sechs nordrhein-westfälischen Stadtregionen[J]. Raumforsch Raumordn Spat Res Plan, 2018. 76 (3): 247- 265.
doi: 10.1007/s13147-018-0532-5 |
[33] |
Farag S, Krizek K J, Dijst M E-shopping and its relationship with in-store shopping: Empirical evidence from the Netherlands and the USA[J]. Transport Reviews, 2006. 26 (1): 43- 61.
doi: 10.1080/01441640500158496 |
[34] |
Zhen F, Du X, Cao J et al The association between spatial attributes and e-shopping in the shopping process for search goods and experience goods: Evidence from Nanjing[J]. Journal of Transport Geography, 2018. 66, 291- 299.
doi: 10.1016/j.jtrangeo.2017.11.007 |
[35] |
Farag S, Weltevreden J W J, Rietbergen T V et al E-shopping in the Netherlands: Does geography matter?[J]. Environment and Planning B: Planning and Design, 2006. 33 (1): 59- 74.
doi: 10.1068/b31083 |
[36] |
Zhai Q, Cao X, Mokhtarian P L et al The interactions between e-shopping and store shopping in the shopping process for search goods and experience goods[J]. Transportation, 2017. 44 (5): 885- 904.
doi: 10.1007/s11116-016-9683-9 |
[37] |
Maat K, Konings R Accessibility or Innovation? Store shopping trips versus online shopping[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018. 2672 (50): 1- 10.
doi: 10.1177/0361198118794044 |
[38] |
Clarke G, Thompson C, Birkin M The emerging geography of e-commerce in British retailing[J]. Regional Studies, Regional Science, 2015. 2 (1): 371- 391.
doi: 10.1080/21681376.2015.1054420 |
[39] |
席广亮, 甄峰, 汪侠, 等 南京市居民网络消费的影响因素及空间特征[J]. 地理研究, 2014. 33 (2): 284- 295.
doi: 10.11821/dlyj201402008 |
Xi Guangliang, Zhen Feng, Wang Xia et al Study on the influencing factors and spatial characteristics of residents’ online consumption in Nanjing[J]. Geographical Research, 2014. 33 (2): 284- 295.
doi: 10.11821/dlyj201402008 |
|
[40] | 张永明, 甄峰 建成环境对居民购物模式选择的影响——以南京为例[J]. 地理研究, 2019. 38 (2): 313- 325. |
Zhang Yongming, Zhen Feng The influence of built environment on the choice of residents’ shopping modes: A case study of Nanjing[J]. Geographical Research, 2019. 38 (2): 313- 325. | |
[41] | 马静, 柴彦威, 张文佳 北京市居民购物出行影响因素的空间分异[J]. 经济地理, 2009. 29 (12): 2006- 2011. |
Ma Jing, Chai Yanwei, Zhang Wenjia A study on shopping behavior of Beijing residents:The spatial differentiation of influencing factors[J]. Economic Geography, 2009. 29 (12): 2006- 2011. | |
[42] | 翁艺丹, 千庆兰, 陈颖彪, 等 广州人口空间均衡特征与经济关联研究初探[J]. 广州大学学报(自然科学版), 2015. 14 (6): 84- 91. |
Weng Yidan, Qian Qinglan, Chen Yinbiao et al A preliminary study on the spatial equilibrium of Guangzhou's population and its relationship with economy[J]. Journal of Guangzhou University (Natural Science Edition), 2015. 14 (6): 84- 91. | |
[43] | 张小英, 巫细波 广州购物中心时空演变及对城市商业空间结构的影响研究[J]. 地理科学, 2016. 36 (2): 231- 238. |
Zhang Xiaoying, Wu Xibo Spatial-temporal evolution of malls in Guangzhou city and its impact on urban commercial spatial structure[J]. Scientia Geographica Sinica, 2016. 36 (2): 231- 238. | |
[44] | 国家统计局广州调查队城镇住户处.网购消费需求与供给应对分析[N/OL]. 2018-08-28. http://gdzd.stats.gov.cn/gzdcd/gz_xxfx/201808/t20180828_168889.html. |
National Bureau of Statistics.Analysis on the demand and supply of online purchase. 2018-08-28. http://gdzd.stats.gov.cn/gzdcd/gz_xxfx/2018-08/t20180828_168889.html. | |
[45] | 傅辰昊, 周素红, 闫小培, 等 广州市零售商业中心消费活动时变模式及其影响因素[J]. 地理科学, 2018. 38 (1): 20- 30. |
Fu Chenhao, Zhou Suhong, Yan Xiaopei et al Temporal variation patterns and influencing factors of consuming activity in retailing centers: A case study of Guangzhou, China[J]. Scientia Geographica Sinica, 2018. 38 (1): 20- 30. | |
[46] | 李华, 黄碧玲. 广州统计年鉴[M]. 北京: 中国统计出版社, 2017. |
Li Hua, Huang Biling. Guangzhou statistical yearbook. Beijing: China Statistics Press, 2017. | |
[47] | 广州市天河区发展和改革局. 广州市天河区国民经济统计资料2016年[EB/OL]. 2018-08-20. http://www.thnet.gov.cn/gzjg/qzf/qfzggjqlshcbj/tjsj/tjnj/content/post_3762822.html. |
Tianhe District Development and Reform Bureau of Guangzhou. National economic statistics of Tianhe District, Guangzhou 2016. 2018-08-20. http://www.thnet.gov.cn/gzjg/qzf/qfzggjqlshcbj/tjsj/tjnj/content/post_3762822.html. | |
[48] | Golledge R G, Stimson R J. Spatial behavior: A geographic perspective[M]. New York: Guilford Press, 1996. |
[49] |
Forman C, Ghose A, Goldfarb A Competition between local and electronic markets: How the benefit of buying online depends on where you live[J]. Management Science, 2009. 55 (1): 47- 57.
doi: 10.1287/mnsc.1080.0932 |
[50] |
陈文峰, 孟德友, 贺振 河南省城市化水平综合评价及区域格局分析[J]. 地理科学进展, 2011. 30 (8): 978- 985.
doi: 10.11820/dlkxjz.2011.08.004 |
Chen Wenfeng, Meng Deyou, He Zhen Comprehensive evaluation and spatial pattern of regional urbanization level in Henan[J]. Progress in Geography, 2011. 30 (8): 978- 985.
doi: 10.11820/dlkxjz.2011.08.004 |
|
[51] |
张艳, 柴彦威, 颜亚宁 城市社区周边商业环境的特征与评价—基于北京市内7个社区的调查[J]. 城市发展研究, 2008. 15 (6): 62- 69.
doi: 10.3969/j.issn.1006-3862.2008.06.012 |
Zhang Yan, Chai Yanwei, Yan Yaning The characteristics and evaluation of commercial environment surrounding urban community-based on case study of 7 communities in Beijing[J]. Urban Studies, 2008. 15 (6): 62- 69.
doi: 10.3969/j.issn.1006-3862.2008.06.012 |
|
[52] | 齐兰兰, 周素红 邻里建成环境对居民外出型休闲活动时空差异的影响——以广州市为例[J]. 地理科学, 2018. 38 (1): 31- 40. |
Qi Lanlan, Zhou Suhong The influence of neighborhood built environments on the spatial-temporal characteristics of residents’daily leisure activities: A case study of Guangzhou[J]. Scientia Geographica Sinica, 2018. 38 (1): 31- 40. | |
[53] | 王士君, 浩飞龙, 姜丽丽 长春市大型商业网点的区位特征及其影响因素[J]. 地理学报, 2015. 70 (6): 893- 905. |
Wang Shijun, Hao Feilong, Jiang Lili Locations and their determinants of large-scale commercial sites in Changchun, China[J]. Acta Geographica Sinica, 2015. 70 (6): 893- 905. | |
[54] | 林李月, 朱宇, 柯文前, 等 基本公共服务对不同规模城市流动人口居留意愿的影响效应[J]. 地理学报, 2019. 74 (4): 737- 752. |
Lin Liyue, Zhu Yu, Ke Wenqian et al The impact of migrants’ access to urban public services on their urban settlement intentions: A study from the perspective of different-sized cities[J]. Acta Geographica Sinica, 2019. 74 (4): 737- 752. | |
[55] | 张文彤, 董伟. SPSS统计分析高级教程[M]. 北京: 高等教育出版社, 2004. |
Zhang Wentong, Dong Wei. SPSS advanced course on statistical analysis. Beijing: Higher Education Press, 2004. | |
[56] | Li H, Cheng K, Russell M G The impact of perceived channel utilities, shopping orientations, and demographics on the consumer’s online buying behavior[J]. Journal of Computer-Mediated Communication, 1999. 5 (2): 1- 20. |
[57] |
章雨晴, 甄峰, 张永明 南京市居民网络购物行为特征——以书籍和衣服为例[J]. 地理科学进展, 2016. 35 (4): 476- 486.
doi: 10.18306/dlkxjz.2016.04.008 |
Zhang Yuqing, Zheng Feng, Zhang Yongming Characteristics of e-shopping behavior of Nanjing residents: A case of books and clothes[J]. Progress in Geography, 2016. 35 (4): 476- 486.
doi: 10.18306/dlkxjz.2016.04.008 |
|
[58] |
Anderson W P, Chatterjee L, Lakshmanan T R E-commerce, transportation, and economic geography[J]. Growth and Change, 2003. 34 (4): 415- 432.
doi: 10.1046/j.0017-4815.2003.00228.x |
[59] | 吴泽驹. 广州交通拥堵综合治理对策研究[D]. 广州: 华南理工大学, 2016. |
Wu Zeju. Comprehensive measures research of traffic congestion in Guangzhou. Guangzhou: South China University of Technology, 2016. |
[1] | 王丹, 方斌, 张军, 陈正富. 基于社区特征分析的扬州市居住−服务业空间关联及机理[J]. 地理科学, 2020, 40(7): 1134-1141. |
[2] | 齐兰兰, 周素红. 邻里建成环境对居民外出型休闲活动时空差异的影响——以广州市为例[J]. 地理科学, 2018, 38(1): 31-40. |
[3] | 陈忠暖, 刘松, 王帅. 城市常规公交空间演化过程研究——以广州市为例[J]. 地理科学, 2017, 37(1): 55-63. |
[4] | 齐兰兰, 周素红, 闫小培. 广州市医疗设施可达性模型中端点吸引的影响因素检验[J]. 地理科学, 2014, 34(5): 580-586. |
[5] | 陈颖彪, 周倩仪, 陈健飞. 近30年广州市土地覆被变化时空特征分析[J]. 地理科学, 2009, 29(3): 368-374. |
[6] | 王华, 彭华. 城市化进程中郊区农民迁移意愿模型——对广州的实证研究[J]. 地理科学, 2009, 29(1): 50-55. |
[7] | 许学强, 葛永军, 张俊军. 广州城市可持续发展及企业行为研究[J]. 地理科学, 2003, 23(2): 218-222. |
[8] | 吴郁文, 谢彬, 骆慈广, 张蕴坚. 广州市城区零售商业企业区位布局的探讨[J]. 地理科学, 1988, 8(3): 208-217,295. |
|