地理科学 ›› 2022, Vol. 42 ›› Issue (4): 739-750.doi: 10.13249/j.cnki.sgs.2022.04.019
• 黄河流域城市高质量发展专栏 • 上一篇
潘梅娥1,2(), 杨昆1,2,*(
), 邹天乐1, 孙润1, 张锡花1, 张煜1
收稿日期:
2021-06-12
修回日期:
2021-10-01
出版日期:
2022-04-10
发布日期:
2022-06-07
通讯作者:
杨昆
E-mail:pme123@126.com;kmdcynu@163.com
作者简介:
潘梅娥(1986-),女,云南曲靖人,讲师,博士研究生,主要从事水环境遥感监测与评价。E-mail: pme123@126.com
基金资助:
Pan Meie1,2(), Yang Kun1,2,*(
), Zou Tianle1, Sun Run1, Zhang Xihua1, Zhang Yu1
Received:
2021-06-12
Revised:
2021-10-01
Online:
2022-04-10
Published:
2022-06-07
Contact:
Yang Kun
E-mail:pme123@126.com;kmdcynu@163.com
Supported by:
摘要:
基于2001—2019年洞里萨湖白天的湖泊表面水温(LSWTday)、近地表气温(AT)、太阳辐射(SR)、地表气压(SP)、降水量(TP)、相对湿度(RH)、风速(WS)、总云量(TCC)以及水位(WL)数据,采用趋势分析、稳定性分析、持续性分析和突变分析等方法,研究了LSWTday及各气候因素的时空分布及变化特征;利用相关性分析、回归分析和Z-Score标准化方法,厘清了各气候因素变化对LSWTday的影响。结果表明:① 时间尺度上,区域气候以AT、WS、TCC显著升高,WL显著下降为主要特征;LSWTday的平均升温速率为0.372℃/10a,且具有持续变暖趋势,与气候因素的突变点具有时间一致性。空间尺度上,LSWTday和各气候因素的空间分布及变化趋势具有明显的空间异质性。其中,LSWTday除西部湖区有微小降温外,其余湖区表现出明显的升温趋势。气候因素中,AT、SP、TP、TCC和RH的变化率大致呈现为南高值北低值的分布,而SR和WS的变化率分布为南低值北高值。② 不同时间尺度上,驱动洞里萨湖LSWTday变化的气候因素不同。年均尺度上,LSWTday主要受到AT、WS和WL的驱动;月均尺度上,AT变化仍是驱动LSWTday变化的主要因素;季节尺度上,TP、WL和TCC升高为春夏LSWTday降温的主要原因,RH是秋季LSWTday波动的主要影响因素,冬季LSWTday随同AT的升温而变暖。
中图分类号:
潘梅娥, 杨昆, 邹天乐, 孙润, 张锡花, 张煜. 区域气候变化下洞里萨湖表面水温时空变化的归因[J]. 地理科学, 2022, 42(4): 739-750.
Pan Meie, Yang Kun, Zou Tianle, Sun Run, Zhang Xihua, Zhang Yu. Determining Factors in Spatio-temporal Variation of the Tonle Sap Lake’s Surface Water Temperature Under Regional Climate Change[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(4): 739-750.
表1
分析方法的变量定义
变量 | 含义 | 变量 | 含义 | |
| WL观测值、LSWTday及各气象因素整景影像年均值 | | Hurst指数 | |
| LSWTday及各气象因素第 | | 相关系数,绝对值越大表明相关性越强 | |
| 时间系列, | | LSWTday时间系列内的均值 | |
| 截距 | | 各气候因素时间系列内的均值 | |
| 年均总变化率 | | 第t年的LSWTday值 | |
| 残差 | | 第t年的各气候因素值 | |
| 各像元变化率 | | 回归系数 | |
| 变异系数,值越大说明 | | LSWTday模拟值 | |
| | | 样本总数19 | |
| 19 a | | Z-Score标准化结果 | |
| 第 |
表2
不同时间尺度LSWTday与区域气候因素间的回归模型
时间尺度 | 回归模型 | 显著性检验(置信水平) | R2 | RMSE/℃ | |
注:LSWTday为白天的湖泊表面水温、AT为近地表气温、WS为风速、WL为水位、SP为地表气压、TP为降水、RH为相对湿度、TCC为总云量。 | |||||
年均 | | 99% | 0.80 | 0.18 | |
| 95% | 0.85 | 0.15 | ||
| 90% | 0.88 | 0.14 | ||
月均 | | 99% | 0.77 | 0.91 | |
季节均值 | 春 | | 99% | 0.54 | 0.60 |
夏 | | 99% | 0.47 | 0.61 | |
| 95% | 0.65 | 0.50 | ||
| 95% | 0.74 | 0.43 | ||
秋 | | 99% | 0.40 | 0.40 | |
冬 | | 99% | 0.35 | 0.34 |
[1] | IPCC. Climate change 2013: The physical science basis, technical summary[M]. Cambridge: Cambridge University Press, 2013. |
[2] | ACIA. Impacts of a warming Arctic: Arctic climate impact assessment[M]. Cambridge: Cambridge University Press, 2004. |
[3] | Adrian R, Reilly C M O, Zagarese H et al. Lakes as sentinels of climate change[J]. Limnology and Oceanography, 2009, 54(6): 2283-2297. |
[4] |
Sharma S, Gray D K, Read J S et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009[J]. Scientific Data, 2015, 2: 150008
doi: 10.1038/sdata.2015.8 |
[5] |
Keskinen M. The lake with floating villages: Socio-economic analysis of the Tonle Sap Lake[J]. International Journal of Water Resources Development, 2006, 22(3): 463-480.
doi: 10.1080/07900620500482568 |
[6] |
Livingstone D M, Dokulil M T. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation[J]. Limnology and Oceanography, 2001, 46(5): 1220-1227.
doi: 10.4319/lo.2001.46.5.1220 |
[7] | Zhang G, Yao T, Xie H et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research Atmospheres, 2015, 119(14): 8552-8567. |
[8] |
Xiao F, Ling F, Du Y et al. Evaluation of spatial-temporal dynamics in surface water temperature of Qinghai Lake from 2001 to 2010 by using MODIS data[J]. Journal of Arid Land, 2013, 5(4): 452-464.
doi: 10.1007/s40333-013-0188-5 |
[9] | Yang K, Yu Z, Luo Y et al. Spatial-temporal variation of lake surface water temperature and its driving factors in Yunnan-Guizhou Plateau[J]. Water Resources Research, 2019, 55(6): 4688-4703. |
[10] |
黄俊雄, 徐宗学. 太湖流域1954—2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-40.
doi: 10.3969/j.issn.1004-8227.2009.01.006 |
Huang Junxiong, Xu Zongxue. Spatial-temporal characteristics of long-term trends for climate change in the Taihu basin during 1954 to 2006. Resources and Environment in the Yangtze Basin, 2009, 18(1): 33-40.
doi: 10.3969/j.issn.1004-8227.2009.01.006 |
|
[11] |
Desai A R, Austin J A, Bennington V et al. Stronger winds over a large lake in response to weakening air-to-lake temperature gradient[J]. Nature Geoscience, 2009, 2(12): 855-858.
doi: 10.1038/ngeo693 |
[12] |
Schmid M, Koster O. Excess warming of a Central European lake driven by solar brightening[J]. Water Resources Research, 2016, 52(10): 8103-8116.
doi: 10.1002/2016WR018651 |
[13] |
Yang K, Yu Z, Luo Y. Analysis on driving factors of lake surface water temperature for major lakes in Yunnan-Guizhou Plateau[J]. Water Research, 2020, 184: 116018
doi: 10.1016/j.watres.2020.116018 |
[14] |
Woolway R I, Meinson P, Nõges P et al. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake[J]. Climatic Change, 2017, 141(4): 759-773.
doi: 10.1007/s10584-017-1909-0 |
[15] |
Valerio G, Pilotti M, Barontini S et al. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change[J]. Hydrological Processes, 2015, 29(5): 767-779.
doi: 10.1002/hyp.10183 |
[16] | Qu W, Hu N, Fu J et al. Analysis of the tonle sap flood pulse based on remote sensing: How much does Tonle Sap Lake affect the mekong river flood?[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2018, 42(3): 1461-1465. |
[17] | Pan M, Yang K. Analysis of variation characteristics and driving factors of Tonle Sap Lake’s surface water temperature from 2001 to 2018[J]. Polish Journal of Environmental Studies, 2021, 30(3): 2709-2722. |
[18] | 王敏, 梁雨华, 马建行, 等. 基于MODIS数据的2015年夏季全球大型湖泊表面温度格局初析[J]. 湿地科学, 2017, 15(4): 571-581. |
Wang Min, Liang Yuhua, Ma Jianhang et al. Preliminary study on pattern of surface temperature of large lakes in the world in summer in 2015 based on MODIS LST product. Wetland Science, 2017, 15(4): 571-581. | |
[19] | Wan Z. Collection-5 MODIS land surface temperature products users’ guide [R]. ICESS. Santa Barbara: University of California, 2009: 1-30. |
[20] | 张瑶. 基于Landsat时序数据的洞里萨湖湖滩高程模型构建及应用[D]. 昆明: 云南大学, 2019. |
Zhang Yao. Construction and application on lakeshore elevation model of Tonle Sap Lake based on Landsat time series data. Kunming: Yunnan University, 2019. | |
[21] | 阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔, 等. 基于MODIS数据的新疆地表蒸散量时空分布及变化趋势分析[J]. 地理研究, 2017, 36(7): 1245-1256. |
Adilai Wufu, Yusufujiang Rusuli, Reyilai Kadeer et al. Spatio-temporal distribution and evolution trend of evapotranspiration in Xinjiang based on MOD16 data. Geographical Research, 2017, 36(7): 1245-1256. | |
[22] | 何宝忠, 丁建丽, 张喆, 等. 新疆植被覆盖度趋势演变实验性分析[J]. 地理学报, 2016, 71(11): 1948-1966. |
He Baozhong, Ding Jianli, Zhang Zhe et al. Experimental analysis of spatial and temporal dynamics of fractional vegetation cover in Xinjiang. Acta Geographica Sinica, 2016, 71(11): 1948-1966. | |
[23] |
霍雨, 王腊春, 陈晓玲, 等. 1950s以来鄱阳湖流域降水变化趋势及其持续性特征[J]. 湖泊科学, 2011, 23(3): 454-462.
doi: 10.18307/2011.0320 |
Huo Yu, Wang Lachun, Chen Xiaoling et al. Long-term trend and persistence of precipitation over Lake Poyang basin since 1950s. Journal of Lake Sciences, 2011, 23(3): 454-462.
doi: 10.18307/2011.0320 |
|
[24] |
Phuong D N D, Tram V N Q, Nhat T T et al. Hydro-meteorological trend analysis using the Mann-Kendall and innovative-Sen methodologies: a case study[J]. International Journal of Global Warming, 2020, 20(2): 145-164.
doi: 10.1504/IJGW.2020.105385 |
[25] |
Wang R, Peng W, Liu X et al. Characteristics of runoff variations and attribution analysis in the Poyang lake basin over the past 55 years[J]. Sustainability, 2020, 12(3): 944
doi: 10.3390/su12030944 |
[26] |
Wu H, Hayes M J, Weiss A et al. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score[J]. International Journal of Climatology, 2001, 21(6): 745-758.
doi: 10.1002/joc.658 |
[27] |
Woolway R I, Verburg P, Lenters J D et al. Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes[J]. Limnology and Oceanography, 2018, 63(6): 2436-2449.
doi: 10.1002/lno.10950 |
[28] |
Piccolroaz S, Woolway R I, Merchant C J. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone[J]. Climatic Change, 2020, 160: 427-442.
doi: 10.1007/s10584-020-02663-z |
[29] | O’Reilly C M, Sharma S, Gray D K et al. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophysical Research Letters, 2015, 42(24): 10773-10781. |
[30] | Piman T, Cochrane T A, Arias M E et al. Assessment of flow changes from hydropower development and operations in Sekong, Sesan and Srepok Rivers of the Mekong Basin[J]. Journal of Water Resources Planning & Management, 2013, 139(11): 723-732. |
[31] |
Cochrane T A, Arias M E, Piman T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system[J]. Hydrology and Earth System Sciences, 2014, 18: 4529-4541.
doi: 10.5194/hess-18-4529-2014 |
[32] | Kettle H, Thompson R, Anderson N J et al. Empirical modeling of summer lake surface temperatures in southwest Greenland[J]. Limnology & Oceanography, 2004, 49(1): 271-282. |
[33] |
Woolway R I, Merchant C J. Intralake Heterogeneity of Thermal Responses to Climate Change: A study of large northern hemisphere lakes[J]. Journal of Geophysical Research Atmospheres, 2018, 123(6): 3087-3098.
doi: 10.1002/2017JD027661 |
[34] |
Edinger JE, Duttweiler DW, Geyer JC. The Response of Water Temperatures to Meteorological Conditions[J]. Water Resources Research, 1968, 4(5): 1137-1143.
doi: 10.1029/WR004i005p01137 |
[35] | 周喜讯, 张华, 荆现文. 中国地区云量和云光学厚度的分布与变化趋势[J]. 大气与环境光学学报, 2016, 11(1): 1-13. |
Zhou Xixun, Zhang Hua, Jing Xianwen. Distribution and variation trends of cloud amount and optical thickness over China. Journal of Atmospheric and Environmental Optics, 2016, 11(1): 1-13. | |
[36] |
Woolway R I, Verburg P, Merchant C J et al. Latitude and lake size are important predictors of over-lake atmospheric stability[J]. Geophysical Research Letters, 2017, 44(17): 8875-8883.
doi: 10.1002/2017GL073941 |
[37] |
Sharma S, Walker S C, Jackson D A. Empirical modelling of lake water-temperature relationships: A comparison of approaches[J]. Freshwater Biology, 2008, 53(5): 897-911.
doi: 10.1111/j.1365-2427.2008.01943.x |
[1] | 马梓策, 孙鹏, 张强, 姚蕊. 基于MODIS数据的华北地区遥感干旱监测研究[J]. 地理科学, 2022, 42(1): 152-162. |
[2] | 顾吉林, 汤宏山, 刘淼, 耿杨, 于月, 陶涛. 大连市大气污染物质量浓度与气溶胶光学厚度的相关性分析[J]. 地理科学, 2019, 39(3): 516-523. |
[3] | 李净, 王丹, 冯姣姣. 基于MODIS遥感产品和神经网络模拟太阳辐射[J]. 地理科学, 2017, 37(6): 912-919. |
[4] | 马新萍, 白红英, 贺映娜, 秦进. 基于NDVI的秦岭山地植被遥感物候及其与气温的响应关系——以陕西境内为例[J]. 地理科学, 2015, 35(12): 1616-1621. |
[5] | 包刚, 包玉海, 覃志豪, 周义, Shiirev-Adiya. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013, 33(5): 613-621. |
[6] | 吴雪娇, 鲁安新, 王丽红, 张华伟. 基于MODIS的长江源近10年积雪反照率时空分布及动态变化[J]. 地理科学, 2013, 33(3): 371-377. |
[7] | 郭忠明, 王宁练, 毛瑞娟, 武小波, 王盛, 蒋熹. 基于MODIS反演祁连山七一冰川雪粒径[J]. 地理科学, 2013, 33(3): 378-384. |
[8] | 毛德华, 王宗明, 韩佶兴, 任春颖. 1982~2010年中国东北地区植被NPP时空格局及驱动因子分析[J]. 地理科学, 2012, 32(9): 1106-1111. |
[9] | 郑小波, 罗宇翔, 赵天良, 陈娟, 康为民. 中国气溶胶分布的地理学和气候学特征[J]. 地理科学, 2012, 32(3): 265-272. |
[10] | 李金亚, 杨秀春, 徐斌, 曹云刚, 覃志豪, 金云翔, 赵莉娜. 基于MODIS与AMSR-E数据的中国6大牧区草原积雪遥感监测研究[J]. 地理科学, 2011, 31(9): 1097-1104. |
[11] | 南颖, 刘志锋, 董叶辉, 李秀霞, 吉喆. 2000~2008年长白山地区植被覆盖变化对气候的响应研究[J]. 地理科学, 2010, 30(6): 921-928. |
[12] | 侯光雷, 张洪岩, 王野乔, 乔志和, 张正祥. 基于MODIS数据的吉林省中部地表温度反演及空间分布研究[J]. 地理科学, 2010, 30(3): 421-427. |
[13] | 张景, 姚凤梅, 徐永明, 张佳华. 基于MODIS的土地覆盖遥感分类特征的评价与比较[J]. 地理科学, 2010, 30(2): 248-253. |
[14] | 历华, 柳钦火, 邹杰. 基于MODIS数据的长株潭地区NDBI和NDVI与地表温度的关系研究[J]. 地理科学, 2009, 29(2): 262-267. |
[15] | 张友水, 谢元礼. MODIS影像的NDVI和LSWI植被水分含量估算[J]. 地理科学, 2008, 28(1): 72-76. |
|