地理科学 ›› 2022, Vol. 42 ›› Issue (7): 1218-1228.doi: 10.13249/j.cnki.sgs.2022.07.009
收稿日期:
2021-10-11
修回日期:
2022-03-21
出版日期:
2022-07-10
发布日期:
2022-09-07
通讯作者:
杨桂山
E-mail:ltan@niglas.ac.cn;gsyang@niglas.ac.cn
作者简介:
谭蕾(1990−),女,江苏南京人,博士研究生,主要从事流域生态补偿研究。E-mail: ltan@niglas.ac.cn
基金资助:
Tan Lei1,2(), Yang Guishan1,2,*(
), Su Weizhong1,2
Received:
2021-10-11
Revised:
2022-03-21
Online:
2022-07-10
Published:
2022-09-07
Contact:
Yang Guishan
E-mail:ltan@niglas.ac.cn;gsyang@niglas.ac.cn
Supported by:
摘要:
在辨识流域市场化生态补偿概念内涵特征的基础上,归纳剖析国内外流域典型市场化生态补偿类型与模式,从生态补偿主客体、补偿标准、制度设计、效益评估等4个方面分析了流域市场化生态补偿研究的进展,对流域市场化生态补偿未来重点研究方向进行了展望,提出未来研究需在流域生态环境监测与客体定量表征、生态系统服务全链条价值估算、多目标协同的制度设计以及生态补偿绩效综合评价等方面进一步深化,从而为流域生态产品价值化实现提供科学支撑。
中图分类号:
谭蕾, 杨桂山, 苏伟忠. 流域市场化生态补偿研究进展与展望[J]. 地理科学, 2022, 42(7): 1218-1228.
Tan Lei, Yang Guishan, Su Weizhong. Market-oriented Watershed Payment for Ecosystem Services: Progress and Future Perspectives[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(7): 1218-1228.
表1
流域市场化生态补偿典型模式
类型 | 模式 | 主体 | 客体及其表征指标 | 补偿机制与标准 | 典型案例 |
供需主体直接议价实现生态价值 | 流域服务协商付费模式 | 供给方:上游土地管理者或其代表 需求方:下游实际用水者或其代表 | 水资源供给、水质净化 实施最佳管理措施的农业用地面积、保护地役权、关键断面水质指标 | 付费标准和交易合同由供需双方协商谈判决定 | ①美国纽约-Catskill流域生态付费项目 ②法国Vittel矿泉水公司流域服务付费项目 ③中国跨界流域横向生态补偿 |
通过市场机制实现流域生态资源动态平衡 | 抵消缓解模式 | 供给方:土地 管理者 需求方:开发商、地方政府等 | 生物多样性、水质净化、景观美学等 生态用地面积、受损地块和补偿地块之间的距离等 | ①开发或建设过程中造成生态用地损失或难以达到生态用地约束性指标,可通过购买生态用地指标,实现生态用地“零净损失” ②信用额度价格由缓解银行根据市场供需关系确定或由生态指标买卖双方协商决定 | ①美国湿地缓解银行实现流域湿地面积动态平衡 ②中国重庆市基于森林覆盖率指标建立区县级的协商交易平台,实现长江流域上游生态资源动态平衡①(①中国自然资源部《生态产品价值实现典型案例》(第一批),2020年4月) |
水资源交易 模式 | 供给方:农户 需求方:环保团体、政府、农户等用水主体 | 径流调节(增加旱季径流)、水资源供给 永久水权、季度用水配额 | ①水资源供需变化决定市场价格:永久水权价格相对稳定、季度用水配额价格波动幅度大 ②依法确立水资源权属和利用上限;政府出资回购一定的水权,以维持环境生态流量 | ①澳大利亚Murray-Darling流域水市场 | |
通过市场机制整合提升生态价值 | 水基金模式 | 供给方:土地 管理者 需求方:企业、非政府组织、政府机构等多元主体 | 水源涵养、水质净化、沉积物削减等 土地利用/覆被变化面积、生态管理措施 | ①以财政资金、大型用水企业、非政府组织及个人等多渠道筹措资金,引导多元主体参与水源地保护并实现收益共享 ②由多元主体构成的基金理事会享有决策权 | ①拉丁美洲水基金伙伴关系 ②中国浙江杭州青山村建立以公益组织为主导的“善水基金”,实现水源地流域保护②(②中国自然资源部《生态产品价值实现典型案例》(第三批),2021年12月) |
水质配额交易 模式 | 供给方:农户(边际减排成本较低) 需求方:企业(边际减排成本较高或生态收益较高) | 水质净化 削减的流域污染负荷 | ①核算流域污染物负荷总量并颁发许可;农业生产者采用最佳管理措施削减面源污染,产生可交易的信用额度 ②信用额度价格根据市场供需关系决定或通过保护和治理成本测算基准价 ③供需双方间建立“交易比率”确保流域生态环境效益,如:污染物衰减系数、针对天气等外部因素建立的不确定系数、不同污染物之间等效换算系数、退出比率(5%~10%额度退出机制) | ①美国非点源−点源水质信用交易 ②中国溧阳天目湖流域建立以“总量控制、分区设限”的生态容量指标交易机制,构建从农业面源污染退出到服务业生态受益购买之间的交易路径 |
表2
面向供需双方的流域生态补偿标准测算方法
方法类型 | 原理 | 优点 | 缺点 | 适用范围 | |
成本核算法 | 测算供需双方的直接成本、机会成本等 | 在实践中易于操作,可获取补偿标准下限 | 机会成本测算具有不确定性;未充分体现生态系统服务价值 | 以管理措施型指标为主的补偿客体 | |
意愿调查法 | 调查补偿主体在一定生态服务条件下的支付、受偿意愿,常用条件价值评估、选择实验等方法 | 从各利益相关方角度直观反映生态系统服务的机会成本和价值 | 结果主观性较大;受偿和支付意愿可能存在较大差距,难以直接作为协商依据 | ①以生物多样性、洪水调蓄等不具有直接使用价值的补偿客体为主 ②小流域尺度 | |
生态系统服务实际供给价值评估 | 单位面积价值当量与空间溢出模型 | 采用当量法和社会经济等指标扣除当地生态服务消费量或采用空间模型计算外溢的生态系统服务价值 | ①体现流域生态系统服务的方向性和区域性特征 ②明确生态服务净供给地区与净消费地区 | ①多采用截面数据,静态的补偿标准难以体现生态系统服务的供需关系和市场化的动态特征 ②数据质量和精度要求较高 | ①大尺度流域或跨界流域横向生态补偿标准分摊测算 ②水源地等具有重要生态系统功能的流域 |
单位服务功能价值法(生态系统生产总值核算) | 采用生物物理空间分布式模型及统计监测数据核算流域生态系统服务物质量的实际输出,结合市场价格、替代成本法、显示偏好等估值方法评估不同服务价值 | ||||
供需主体博弈模型 | 结合生态足迹、博弈论、代理模型等方法构建主体决策模型,求解目标函数,预测均衡价格 | 数据需求量小,模拟不同主体决策过程,兼顾效率和公平原则 | 未体现流域生态系统结构功能与服务价值时空分异 | 流域水权交易等市场化机制的价格预测 | |
水文−经济耦合模型 | 基于流域物理机制模型建立ES产出的成本函数,结合多种估值方法建立边际收益函数 | 实现生态系统服务供需平衡价格模拟 | 涉及大量数据和区域化参数,建模过程复杂 | 泥沙削减、水量调节等水文过程相关服务的补偿标准测算 |
[1] |
Costanza R, de Groot R, Sutton P et al. Changes in the global value of ecosystem services[J]. Global Environmental Change-Human and Policy Dimensions, 2014, 26: 152-158.
doi: 10.1016/j.gloenvcha.2014.04.002 |
[2] |
傅伯杰, 田汉勤, 陶福禄, 等. 全球变化对生态系统服务的影响研究进展[J]. 中国基础科学, 2020, 22(3): 25-30.
doi: 10.3969/j.issn.1009-2412.2020.03.005 |
Fu Bojie, Tian Hanqin, Tao Fulu et al. Progress of the impact of global change on ecosystem services. China Basic Science, 2020, 22(3): 25-30.
doi: 10.3969/j.issn.1009-2412.2020.03.005 |
|
[3] | 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810. |
Yang Guishan, Ma Ronghua, Zhang Lu et al. Lake status, major problems and protection strategy in China. Journal of Lake Sciences, 2010, 22(6): 799-810. | |
[4] | 杨桂山, 徐昔保. 长江经济带“共抓大保护、不搞大开发”的基础与策略[J]. 中国科学院院刊, 2020, 35(8): 940-950. |
Yang Guishan, Xu Xibao. Foundation and strategy of well-coordinated environmental conservation and avoiding excessive development in the Yangtze River Economic Belt. Bulletin of Chinese Academy of Sciences, 2020, 35(8): 940-950. | |
[5] |
Salzman J, Bennett G, Carroll N et al. The global status and trends of Payments for Ecosystem Services[J]. Nature Sustainability, 2018, 1: 136-144.
doi: 10.1038/s41893-018-0033-0 |
[6] |
Romulo C L, Posner S, Cousins S et al. Global state and potential scope of investments in watershed services for large cities[J]. Nature Communications, 2018, 9: 4375
doi: 10.1038/s41467-018-06538-x |
[7] |
Bennett D E, Gosnell H, Lurie S et al. Utility engagement with payments for watershed services in the United States[J]. Ecosystem Services, 2014, 8: 56-64.
doi: 10.1016/j.ecoser.2014.02.001 |
[8] |
Bremer L L, Auerbach D A, Goldstein J H et al. One size does not fit all: Natural infrastructure investments within the Latin American Water Funds Partnership[J]. Ecosystem Services, 2016, 17: 217-236.
doi: 10.1016/j.ecoser.2015.12.006 |
[9] |
Wheeler S, Loch A, Zuo A et al. Reviewing the adoption and impact of water markets in the Murray-Darling Basin, Australia[J]. Journal of Hydrology, 2014, 518: 28-41.
doi: 10.1016/j.jhydrol.2013.09.019 |
[10] | BenDor T K, Branham J, Timmerman D et al. Predicting the existence and prevalence of the US water quality trading markets [J/OL]. Water, 2021, 13(2): 185.https://www.mdpi.com/2073-4441/13/2/185/htm. |
[11] |
Huber-Stearns H R, Goldstein J H, Cheng A S et al. Institutional analysis of payments for watershed services in the western United States[J]. Ecosystem Services, 2015, 16: 83-93.
doi: 10.1016/j.ecoser.2015.10.009 |
[12] |
万军, 张惠远, 王金南, 等. 中国生态补偿政策评估与框架初探[J]. 环境科学研究, 2005, 18(2): 1-8.
doi: 10.3321/j.issn:1001-6929.2005.02.001 |
Wan Jun, Zhang Huiyuan, Wang Jinnan et al. Policy evaluation and framework discussion of ecological compensation mechanism in China. Research of Environmental Sciences, 2005, 18(2): 1-8.
doi: 10.3321/j.issn:1001-6929.2005.02.001 |
|
[13] | 郑云辰, 葛颜祥, 接玉梅, 等. 流域多元化生态补偿分析框架: 补偿主体视角[J]. 中国人口·资源与环境, 2019, 29(7): 131-139. |
Zheng Yunchen, Ge Yanxiang, Jie Yumei et al. Analysis framework of diversified watershed eco-compensation: A perspective of compensation subject. China Population, Resources and Environment, 2019, 29(7): 131-139. | |
[14] |
任以胜, 陆林, 虞虎, 等. 尺度政治视角下的新安江流域生态补偿政府主体博弈[J]. 地理学报, 2020, 75(8): 1667-1679.
doi: 10.11821/dlxb202008008 |
Ren Yisheng, Lu Lin, Yu Hu et al. Game of government subjects of eco-compensation in the Xin'an River basin based on the politics of scale. Acta Geographica Sinica, 2020, 75(8): 1667-1679.
doi: 10.11821/dlxb202008008 |
|
[15] |
Pan X L, Xu L Y, Yang Z F et al. Payments for ecosystem services in China: Policy, practice, and progress[J]. Journal of Cleaner Production, 2017, 158: 200-208.
doi: 10.1016/j.jclepro.2017.04.127 |
[16] | Shang W X, Gong Y C, Wang Z J et al. Eco-compensation in China: Theory, practices and suggestions for the future[J]. Journal of Environmental Management, 2018, 210: 162-170. |
[17] | 曾贤刚, 刘纪新, 段存儒, 等. 基于生态系统服务的市场化生态补偿机制研究——以五马河流域为例[J]. 中国环境科学. 2018, 38(12): 4755-4763. |
Zeng Xiangang, Liu Jixin, Duan Cunru et al. A study on market-oriented ecological compensation for the ecosystem services based on Wuma River Watershed. China Environmental Science, 2018, 38(12): 4755-4763. | |
[18] |
欧阳志云, 郑华, 岳平. 建立中国生态补偿机制的思路与措施[J]. 生态学报, 2013, 33(3): 686-692.
doi: 10.5846/stxb201212071759 |
Ouyang Zhiyun, Zheng Hua, Yue Ping. Establishment of ecological compensation mechanisms in China: Perspectives and strategies. Acta Ecologica Sinica, 2013, 33(3): 686-692.
doi: 10.5846/stxb201212071759 |
|
[19] | 靳乐山, 楚宗岭, 邹苍改. 不同类型生态补偿在山水林田湖草生态保护与修复中的作用[J]. 生态学报, 2019, 39(23): 8709-8716. |
Jin Leshan, Chu Zongling, Zou Canggai. Role of various types of eco-compensation in ecological protection and restoration of mountains-rivers-forests-farmlands-lakes grasslands. Acta Ecologica Sinica, 2019, 39(23): 8709-8716. | |
[20] | Gu S Z, Jenkins A, Gao S J et al. Ensuring water resource security in China: The need for advances in evidence-based policy to support sustainable management[J]. Environmental Science & Policy, 2017, 75: 65-69. |
[21] |
Sheng J C, Qiu W G, Han X. China’s PES-like horizontal eco-compensation program: Combining market-oriented mechanisms and government interventions[J]. Ecosystem Services, 2020, 45: 101164
doi: 10.1016/j.ecoser.2020.101164 |
[22] |
Wunder S. Revisiting the concept of payments for environmental services[J]. Ecological Economics, 2015, 117: 234-243.
doi: 10.1016/j.ecolecon.2014.08.016 |
[23] |
Muradian R, Corbera E, Pascual U et al. Reconciling theory and practice: An alternative conceptual framework for understanding payments for environmental services[J]. Ecological Economics, 2010, 69(6): 1202-1208.
doi: 10.1016/j.ecolecon.2009.11.006 |
[24] |
Engel S, Pagiola S, Wunder S. Designing payments for environmental services in theory and practice: An overview of the issues[J]. Ecological Economics, 2008, 65(4): 663-674.
doi: 10.1016/j.ecolecon.2008.03.011 |
[25] |
Goldman-Benner R L, Benitez S, Boucher T et al. Water funds and payments for ecosystem services: Practice learns from theory and theory can learn from practice[J]. Oryx, 2012, 46(1): 55-63.
doi: 10.1017/S0030605311001050 |
[26] | 刘桂环, 朱媛媛, 文一惠, 等. 关于市场化多元化生态补偿的实践基础与推进建议[J]. 环境与可持续发展, 2019, 44(4): 30-34. |
Liu Guihuan, Zhu Yuanyuan, Wen Yihui et al. Practices and suggestions on promoting market-oriented diversified eco-compensation. Environment and Sustainable Development, 2019, 44(4): 30-34. | |
[27] |
Roberts W M, Couldrick L B, Williams G et al. Mapping the potential for payments for ecosystem services schemes to improve water quality in agricultural catchments: A multi-criteria approach based on the supply and demand concept[J]. Water Research, 2021, 206: 117693
doi: 10.1016/j.watres.2021.117693 |
[28] |
Wunder S, Engel S, Pagiola S. Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries[J]. Ecological Economics, 2008, 65(4): 834-852.
doi: 10.1016/j.ecolecon.2008.03.010 |
[29] | 柳荻, 胡振通, 靳乐山. 生态保护补偿的分析框架研究综述[J]. 生态学报, 2018, 38(2): 380-392. |
Liu Di, Hu Zhentong, Jin Leshan. Review on analytical framework of eco-compensation. Acta Ecologica Sinica, 2018, 38(2): 380-392. | |
[30] |
Grolleau G, Mc Cann L M J. Designing watershed programs to pay farmers for water quality services: Case studies of Munich and New York City[J]. Ecological Economics, 2012, 76: 87-94.
doi: 10.1016/j.ecolecon.2012.02.006 |
[31] |
Bingham L R. Vittel as a model case in PES discourse: Review and critical perspective[J]. Ecosystem Services, 2021, 48: 101247
doi: 10.1016/j.ecoser.2021.101247 |
[32] |
BenDor T, Brozovic N. Determinants of spatial and temporal patterns in compensatory wetland mitigation[J]. Environmental Management, 2007, 40(3): 349-364.
doi: 10.1007/s00267-006-0310-y |
[33] | Selman M, Suzie G, Evan B et al. Water quality trading programs: An international overview [M]. Washington, DC: World Resources Institute, 2009. |
[34] | Koh N S, Hahn T, Boonstra W J. How much of a market is involved in a biodiversity offset? A typology of biodiversity offset policies [J]. Journal of Environmental Management, 2019, 232: 679-691. |
[35] |
Jack B K, Kousky C, Sims K R E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9465-9470.
doi: 10.1073/pnas.0705503104 |
[36] |
Naeem S, Ingram J C, Varga A et al. Get the science right when paying for nature’s services[J]. Science, 2015, 347(6227): 1206-1207.
doi: 10.1126/science.aaa1403 |
[37] | 彭文英, 王瑞娟, 刘丹丹. 城市群区际生态贡献与生态补偿研究[J]. 地理科学, 2020, 40(6): 980-988. |
Peng Wenying, Wang Ruijuan, Liu Dandan. Inter-regional ecological contribution and ecological compensation in urban agglomeration. Scientia Geographica Sinica, 2020, 40(6): 980-988. | |
[38] |
Jones K W, Powlen K, Roberts R et al. Participation in payments for ecosystem services programs in the Global South: A systematic review[J]. Ecosystem Services, 2020, 45: 101159
doi: 10.1016/j.ecoser.2020.101159 |
[39] |
Polasky S, Kling C L, Levin S A et al. Role of economics in analyzing the environment and sustainable development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5233-5238.
doi: 10.1073/pnas.1901616116 |
[40] |
Frey G E, Kallayanamitra C, Wilkens P et al. Payments for forest-based ecosystem services in the United States: Magnitudes and trends[J]. Ecosystem Services, 2021, 52: 101377
doi: 10.1016/j.ecoser.2021.101377 |
[41] |
Grima N, Singh S J, Smetschka B et al. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies[J]. Ecosystem Services, 2016, 17: 24-32.
doi: 10.1016/j.ecoser.2015.11.010 |
[42] |
Daigneault A, Strong A L, Meyer S R. Benefits, costs, and feasibility of scaling up land conservation for maintaining ecosystem services in the Sebago Lake watershed, Maine, USA[J]. Ecosystem Services, 2021, 48: 101238
doi: 10.1016/j.ecoser.2020.101238 |
[43] |
Banerjee S, Secchi S, Fargione J et al. How to sell ecosystem services: A guide for designing new markets[J]. Frontiers in Ecology and the Environment, 2013, 11(6): 297-304.
doi: 10.1890/120044 |
[44] |
Li R N, Zheng H, Patrick O C et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs[J]. Science Advances, 2021, 7(14): eabf8650
doi: 10.1126/sciadv.abf8650 |
[45] |
Derissen S, Quaas M F. Combining performance-based and action-based payments to provide environmental goods under uncertainty[J]. Ecological Economics, 2013, 85: 77-84.
doi: 10.1016/j.ecolecon.2012.11.001 |
[46] |
Ayambire R A, Pittman J. Adaptive co-management of environmental risks in result-based agreements for the provision of environmental services: A case study of the South of the divide conservation action program[J]. Journal of Environmental Management, 2021, 295: 113111
doi: 10.1016/j.jenvman.2021.113111 |
[47] | Wuepper D, Huber R. Comparing effectiveness and return on investment of action- and results-based agri-environmental payments in Switzerland [J]. American Journal of Agricultural Economics, 2021, 10.1111/ajae. 12284. |
[48] | 王奕淇, 李国平. 流域生态服务价值供给的补偿标准评估——以渭河流域上游为例[J]. 生态学报, 2019, 39(1): 108-116. |
Wang Yiqi, Li Guoping. The evaluation of the watershed ecological compensation standard of ecosystem service value: A case of Weihe watershed upstream. Acta Ecologica Sinica, 2019, 39(1): 108-116. | |
[49] | 吴娜, 宋晓谕, 康文慧, 等. 不同视角下基于InVEST模型的流域生态补偿标准核算——以渭河甘肃段为例[J]. 生态学报, 2018, 38(7): 2512-2522. |
Wu Na, Song Xiaoyu, Kang Wenhui et al. Standard of payment for ecosystem services in a watershed based on InVEST model under different standpoints: A case study of the Weihe River in Gansu Province. Acta Ecologica Sinica, 2018, 38(7): 2512-2522. | |
[50] |
Harou J J, Pulido-Velazquez M, Rosenberg D E et al. Hydro-economic models: Concepts, design, applications, and future prospects[J]. Journal of Hydrology, 2009, 375(3-4): 627-643.
doi: 10.1016/j.jhydrol.2009.06.037 |
[51] | 段靖, 严岩, 王丹寅, 等. 流域生态补偿标准中成本核算的原理分析与方法改进[J]. 生态学报, 2010, 30(1): 221-227. |
Duan Jing, Yan Yan, Wang Danyin et al. Principle analysis and method improvement on cost calculation in watershed ecological compensation. Acta Ecologica Sinica, 2010, 30(1): 221-227. | |
[52] | 尹珂, 肖轶. 三峡库区消落带农户生态休耕经济补偿意愿及影响因素研究[J]. 地理科学, 2015, 35(9): 1123-1129. |
Yin Ke, Xiao Yi. Empirical research on household willingness and its caused factors for economic compensation of eco-fallow in the water-level fluctuation zone of the Three Gorges reservoir area. Scientia Geographica Sinica, 2015, 35(9): 1123-1129. | |
[53] | Liu M C, Yang L, Min Q W. Establishment of an eco-compensation fund based on eco-services consumption[J]. Journal of Environmental Management, 2018, 211: 306-312. |
[54] |
Delorit J D, Block P J. Promoting competitive water resource use efficiency at the water-market scale: An intercooperative demand equilibrium-based approach to water trading[J]. Water Resources Research, 2018, 54(8): 5394-5421.
doi: 10.1029/2017WR022323 |
[55] |
Adamowicz W, Calderon-Etter L, Entem A et al. Assessing ecological infrastructure investments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5254-5261.
doi: 10.1073/pnas.1802883116 |
[56] |
Fu Y C, Zhang J, Zhang C L et al. Payments for ecosystem services for watershed water resource allocations[J]. Journal of Hydrology, 2018, 556: 689-700.
doi: 10.1016/j.jhydrol.2017.11.051 |
[57] |
Ouyang Z Y, Song C S, Zheng H et al. Using gross ecosystem product (GEP) to value nature in decision making[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14593-14601.
doi: 10.1073/pnas.1911439117 |
[58] |
Fang Z, Chen J Y, Liu G et al. Framework of basin eco-compensation standard valuation for cross-regional water supply—A case study in northern China[J]. Journal of Cleaner Production, 2021, 279: 123630
doi: 10.1016/j.jclepro.2020.123630 |
[59] |
Mandle L, Shields-Estrada A, Chaplin-Kramer R et al. Increasing decision relevance of ecosystem service science[J]. Nature Sustainability, 2021, 4(2): 161-169.
doi: 10.1038/s41893-020-00625-y |
[60] |
Lien A M, Schlager E, Lona A. Using institutional grammar to improve understanding of the form and function of payment for ecosystem services programs[J]. Ecosystem Services, 2018, 31: 21-31.
doi: 10.1016/j.ecoser.2018.03.011 |
[61] |
de Lima L S, Krueger T, Garcia-Marquez J. Uncertainties in demonstrating environmental benefits of payments for ecosystem services[J]. Ecosystem Services, 2017, 27: 139-149.
doi: 10.1016/j.ecoser.2017.09.005 |
[62] |
Rabotyagov S S, Campbell T D, White M et al. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18530-18535.
doi: 10.1073/pnas.1405837111 |
[63] |
宋晓谕, 刘玉卿, 邓晓红, 等. 基于分布式水文模型和福利成本法的生态补偿空间选择研究[J]. 生态学报, 2012, 32(24): 7722-7729.
doi: 10.5846/stxb201205100689 |
Song Xiaoyu, Liu Yuqing, Deng Xiaohong et al. Spatial targeting of payments for ecosystem services based on SWAT Model and cost-benefit analysis. Acta Ecologica Sinica, 2012, 32(24): 7722-7729.
doi: 10.5846/stxb201205100689 |
|
[64] |
Valente R A, de Mello K, Metedieri J F et al. A multicriteria evaluation approach to set forest restoration priorities based on water ecosystem services[J]. Journal of Environmental Management, 2021, 285: 112049
doi: 10.1016/j.jenvman.2021.112049 |
[65] | Bremer L L, Hamel P, Ponette-Gonzalez A G et al. Who are we measuring and modeling for? Supporting multilevel decision-making in watershed management[J]. Water Resources Research, 2020, 56(1): e2019WR026011 |
[66] |
Lundberg L, Persson U M, Alpizar F et al. Context matters: Exploring the cost-effectiveness of fixed payments and procurement auctions for PES[J]. Ecological Economics, 2018, 146: 347-358.
doi: 10.1016/j.ecolecon.2017.11.021 |
[67] | Bremer L L, Farley K A, Lopez-Carrb D, What factors influence participation in payment for ecosystem services programs? An evaluation of Ecuador’s SocioPáramo program [J]. Land Use Policy, 2014, 36: 122-133. |
[68] |
Li C Q, Shi Y X, Ni Q et al. Effects of social interactions and information bias on the willingness to pay for transboundary basin ecosystem services[J]. Journal of Environmental Management, 2021, 296: 113233
doi: 10.1016/j.jenvman.2021.113233 |
[69] |
McGinnis I, Atallah S S, Huang J C. Households’ preferences for hydrological services in Veracruz, Mexico:The importance of outcomes vs. program design[J]. Journal of Environmental Management, 2021, 300: 113763
doi: 10.1016/j.jenvman.2021.113763 |
[70] |
Hamel P, Bremer L L, Ponette-Gonzalez A G et al. The value of hydrologic information for watershed management programs: The case of Camboriu, Brazil[J]. Science of the Total Environment, 2020, 705: 135871
doi: 10.1016/j.scitotenv.2019.135871 |
[71] |
Ferraro P J. The future of payments for environmental services[J]. Conservation Biology, 2011, 25(6): 1134-1138.
doi: 10.1111/j.1523-1739.2011.01791.x |
[72] |
Baylis K, Honey-Roses J, Borner J et al. Mainstreaming impact evaluation in nature conservation[J]. Conservation Letters, 2016, 9(1): 58-64.
doi: 10.1111/conl.12180 |
[73] |
Liu J G, Li S X, Ouyang Z Y et al. Ecological and socioeconomic effects of China’s policies for ecosystem services[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9477-9482.
doi: 10.1073/pnas.0706436105 |
[74] |
Lu Y H, Li T, Whitham C et al. Scale and landscape features matter for understanding the performance of large payments for ecosystem services[J]. Landscape and Urban Planning, 2020, 197: 103764
doi: 10.1016/j.landurbplan.2020.103764 |
[75] |
Kroeger T, Klemz C, Boucher T et al. Returns on investment in watershed conservation: Application of a best practices analytical framework to the Rio Camboriu Water Producer program, Santa Catarina, Brazil[J]. Science of the Total Environment, 2019, 657: 1368-1381.
doi: 10.1016/j.scitotenv.2018.12.116 |
[76] |
Saad S I, da Silva J M, Ponette-Gonzalez A G et al. Modeling the on-site and off-site benefits of Atlantic forest conservation in a Brazilian watershed[J]. Ecosystem Services, 2021, 48: 101260
doi: 10.1016/j.ecoser.2021.101260 |
[77] |
Jayachandran S, De Laat J, Lambin E F et al. Cash for carbon: A randomized trial of payments for ecosystem services to reduce deforestation[J]. Science, 2017, 357(6348): 267-273.
doi: 10.1126/science.aan0568 |
[78] |
Andersson K P, Cook N J, Grillos T et al. Experimental evidence on payments for forest commons conservation[J]. Nature Sustainability, 2018, 1(3): 128-135.
doi: 10.1038/s41893-018-0034-z |
[79] |
Jones K W, Mayer A, Von Thaden J et al. Measuring the net benefits of payments for hydrological services programs in Mexico[J]. Ecological Economics, 2020, 175: 106666
doi: 10.1016/j.ecolecon.2020.106666 |
[80] |
Zheng H, Robinson B E, Liang Y C et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16681-16686.
doi: 10.1073/pnas.1312324110 |
[81] |
Valatin G, Ovando P, Abildtrup J et al. Approaches to cost-effectiveness of payments for tree planting and forest management for water quality services[J]. Ecosystem Services, 2022, 53: 101373
doi: 10.1016/j.ecoser.2021.101373 |
[82] |
Keiser D A, Kling C L, Shapiro J S. The low but uncertain measured benefits of US water quality policy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5262-5269.
doi: 10.1073/pnas.1802870115 |
[83] |
Perevochtchikova M, Castro-Diaz R, Langle-Flores A et al. A systematic review of scientific publications on the effects of payments for ecosystem services in Latin America, 2000-2020[J]. Ecosystem Services, 2021, 49: 101270
doi: 10.1016/j.ecoser.2021.101270 |
[84] |
Krause M S, Matzdorf B. The intention of companies to invest in biodiversity and ecosystem services credits through an online-marketplace[J]. Ecosystem Services, 2019, 40: 101026
doi: 10.1016/j.ecoser.2019.101026 |
[85] |
Khan H F, Brown C M. Effect of hydrogeologic and climatic variability on performance of a groundwater market[J]. Water Resources Research, 2019, 55(5): 4304-4321.
doi: 10.1029/2018WR024180 |
[86] | 杨武, 陆巧玲, 周婷. 生态保护项目绩效评估的技术方法体系[J]. 生态学报, 2020, 40(5): 1779-1788. |
Yang Wu, Lu Qiaoling, Zhou Ting. Methodologies of impact evaluation for ecological protection programs. Acta Ecologica Sinica, 2020, 40(5): 1779-1788. |
[1] | 温玉玲, 张小林, 魏佳豪, 王晓龙, 蔡永久. 鄱阳湖环湖区生态系统服务价值时空变化及权衡协同关系[J]. 地理科学, 2022, 42(7): 1229-1238. |
[2] | 马月伟, 潘健峰, 蔡思青, 陈玉美, 陈艳. 生态系统服务社会价值与生态价值的权衡与协同关系——以普达措国家公园为例[J]. 地理科学, 2022, 42(7): 1283-1294. |
[3] | 李连刚, 张平宇, 程钰, 王成新. 黄河流域经济韧性时空演变与影响因素研究[J]. 地理科学, 2022, 42(4): 557-567. |
[4] | 贾卓, 赵锦瑶, 杨永春, 陈兴鹏. 黄河流域兰西城市群环境规制效率的空间格局及其空间收敛性[J]. 地理科学, 2022, 42(4): 568-578. |
[5] | 逯承鹏, 纪薇, 刘志良, 毛锦凰, 李京忠, 薛冰. 黄河流域甘肃段县域“三生”功能空间时空格局及影响因素识别[J]. 地理科学, 2022, 42(4): 579-588. |
[6] | 陈万旭, 梁加乐, 卞娇娇, 曾杰, 潘思佩. 黄河流域景观破碎化对土壤保持服务影响研究[J]. 地理科学, 2022, 42(4): 589-601. |
[7] | 钞锦龙, 李乐乐, 杨朔, 雷添杰, 赵德一, 李浩杰. 汾河流域城市化与水资源耦合协调关系研究[J]. 地理科学, 2022, 42(3): 487-496. |
[8] | 彭俊, 凌敏, 俞珊妮, 谷梓鹏, 龚传康. 长江流域径流量变化过程及其对ENSO和PDO的响应[J]. 地理科学, 2022, 42(3): 515-526. |
[9] | 邓海军, 卢艺琎, 王媛媛, 陈兴伟, 刘群. 基于GLDAS-Noah模型的闽江流域实际蒸散发评估[J]. 地理科学, 2022, 42(3): 548-556. |
[10] | 刘秀丽, 王昕, 郭丕斌, 熊睿, 聂雷, 申俊, 张静. 黄河流域煤炭富集区煤炭水足迹演变及驱动效应研究[J]. 地理科学, 2022, 42(2): 293-302. |
[11] | 徐维祥, 郑金辉, 王睿, 周建平, 胡豹, 刘程军. 黄河流域城市生态效率演化特征及门槛效应[J]. 地理科学, 2022, 42(1): 74-82. |
[12] | 赵宏波, 岳丽, 刘雅馨, 董冠鹏, 苗长虹. 高质量发展目标下黄河流域城市居民生活质量的时空格局及障碍因子[J]. 地理科学, 2021, 41(8): 1303-1313. |
[13] | 曾刚, 胡森林. 技术创新对黄河流域城市绿色发展的影响研究[J]. 地理科学, 2021, 41(8): 1314-1323. |
[14] | 莫惠斌, 王少剑. 黄河流域县域碳排放的时空格局演变及空间效应机制[J]. 地理科学, 2021, 41(8): 1324-1335. |
[15] | 梁流涛, 杨泞溪, 区志源, 王森, 史茵茵, 陈笑, 孙玙璠. 黄河流域城镇土地经济密度多尺度空间格局及影响因素分析[J]. 地理科学, 2021, 41(8): 1336-1344. |
|