地理科学 ›› 2022, Vol. 42 ›› Issue (8): 1483-1491.doi: 10.13249/j.cnki.sgs.2022.08.016

• 黑土专栏 • 上一篇    下一篇

中国旅游城市星级饭店韧性时空分异及影响因素

王庆伟1,2(), 梅林2,3,*(), 姜洪强2, 姚前4, 石勇5, 付占辉6   

  1. 1.郑州大学管理学院,河南 郑州 450001
    2.东北师范大学地理科学学院,吉林 长春 130024
    3.长春财经学院管理学院,吉林 长春 130122
    4.华东师范大学地理科学学院,上海 200241
    5.上海体育学院经济管理学院,上海 200438
    6.河南大学地理与环境学院,河南 开封 475004
  • 收稿日期:2022-01-01 修回日期:2022-06-18 出版日期:2022-08-25 发布日期:2022-10-11
  • 通讯作者: 梅林 E-mail:wangqingwei@zzu.edu.cn;meil682@nenu.edu.cn
  • 作者简介:王庆伟(1979-),女,河南周口人,讲师,博士研究生,主要从事旅游地理研究。E-mail: wangqingwei@zzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41971202);国家自然科学基金项目(41601566);河南省高校人文社会科学研究一般项目资助(2022-ZDJH-00102)

Spatio-temporal Differentiation and Influencing Factors of Star-rated Hotels’ Resilience of China’s Tourism Cities

Wang Qingwei1,2(), Mei Lin2,3,*(), Jiang Hongqiang2, Yao Qian4, Shi Yong5, Fu Zhanhui6   

  1. 1. School of Management, Zhengzhou University, Zhengzhou 450001, Henan, China
    2. School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin, China
    3. School of Management, Changchun University of Finance and Economics, Changchun 130122, Jilin, China
    4. School of Geographic Sciences, East China Normal University, Shanghai 200241, China
    5. Department of Economics and Management, Shanghai University of Sport, Shanghai 200438, China
    6. College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China
  • Received:2022-01-01 Revised:2022-06-18 Online:2022-08-25 Published:2022-10-11
  • Contact: Mei Lin E-mail:wangqingwei@zzu.edu.cn;meil682@nenu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(41971202);National Natural Science Foundation of China(41601566);Humanities and Social Sciences Program of Higher Education in Henan Province(2022-ZDJH-00102)

摘要:

新冠肺炎疫情重创全球旅游业、饭店业,但不同城市旅游业、饭店业应对和适应扰动的能力不同,即韧性存在差异。以中国41个旅游城市的星级饭店为研究对象,构建基于累积损失的韧性评估模型,运用SARIMA、随机森林等方法,探讨新冠肺炎疫情干扰下2020年旅游城市星级饭店韧性的时空分异特征及影响因素。研究发现:①在中国疫情防控成效逐渐趋好的态势下,中国旅游城市星级饭店韧性不断增强,但韧性演变存在差异。②中国旅游城市星级饭店韧性空间分异明显,存在交通廊道效应和地理邻近效应。③影响旅游城市星级饭店韧性水平的主要因素依次为:客房平均出租率增长率、餐饮与客房收入比、人均公园绿地面积、国内旅游收入增长率、空气质量优良率、城镇居民人均可支配收入等,它们对旅游城市星级饭店韧性水平的影响呈现出非线性的复杂作用。对指导新冠肺炎疫情干扰下旅游城市星级饭店韧性增强具有重要的参考价值。

关键词: 旅游城市, 星级饭店韧性, 新冠肺炎疫情, 随机森林模型

Abstract:

COVID-19 has caused heavy losses to the tourism industry and the hotel industry. However, it is different that the ability of tourism cities’ hotels to cope with and adapt to the epidemic, that is, their resilience is different. Taking star-rated hotels of 41 tourism cities in China as an example, this paper constructs a resilience evaluation model based on their cumulative loss. Using SARIMA Model and Random Forest Model, this paper analyzes the spatio-temporal differentiation and factors of star-rated hotels’ resilience of tourism cities in 2020 under the impact of COVID-19. The results show that: 1) With the gradual improvement of the epidemic prevention and control in China, star-rated hotels’ resilience of tourism cities continues to increase, but the evolution of their resilience is different. 2) From a spatial point of view, it is different that star-rated hotels’ resilience of tourism cities. The resilience’s spatial differentiation shows the traffic corridor effect and the geographical proximity effect. 3) There are six important factors affecting star-rated hotels’ resilience of tourism cities, which are the growth rate of average rental rate, the ratio of catering to room income, the urban parks and green spaces per capita, the growth rate of domestic tourism income, the rate of excellent air quality, and the disposable income of urban residents per capita, and which have complex and nonlinear effects on the resilience. This paper is beneficial to star-rated hotels’ resilience of tourism cities under the impact of COVID-19.

Key words: tourism cities, star-rated hotels’ resilience, COVID-19, Random Forest Model

中图分类号: 

  • F129.9