地理科学 ›› 2022, Vol. 42 ›› Issue (9): 1627-1637.doi: 10.13249/j.cnki.sgs.2022.09.012
收稿日期:
2021-08-25
修回日期:
2021-11-15
出版日期:
2022-09-10
发布日期:
2022-11-14
作者简介:
沈中健(1991−),男,山东济南人,助理研究员,博士,主要研究方向为城市热环境。E-mail: shenzj@sdu.edu.cn
基金资助:
Received:
2021-08-25
Revised:
2021-11-15
Online:
2022-09-10
Published:
2022-11-14
Supported by:
摘要:
基于厦门2019年的兴趣面(Area of Interest)数据、Landsat遥感影像等多源数据,应用Logistic回归模型、空间自回归模型、衰减模型,分析各类建设用地功能区热力特征和对城市热岛影响程度及升温效应的分异规律。结果表明:各类功能区均具有高温现象。交通运输区高温现象显著,仓储区、工业区次之,居住区、公共设施区则较弱;各功能区比例均对形成城市热岛效应有正向影响,影响大小依次为:工业区>仓储区>公共管理与服务区>居住区>商业服务业区>交通运输区>公共设施区;各功能区比例均与热岛强度呈正相关关系,且空间溢出效应显著。交通运输区、商业服务业区比例对热岛强度的正向影响较强,仓储区、工业区次之,公共管理与服务区、居住区、公共设施区比例的正向影响较弱;工业区、商业服务业区、仓储区、交通运输区的升温效应比较显著。功能区面积越大,则其升温效应越显著,但大面积功能区的升温效应可能出现“饱和现象”。
中图分类号:
沈中健. 厦门市建设用地功能区的热环境分异研究[J]. 地理科学, 2022, 42(9): 1627-1637.
Shen Zhongjian. Variability of Urban Thermal Environment for Functional Regions of Construction Land in Xiamen City[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(9): 1627-1637.
表3
厦门市各功能区的地表热环境等级面积比例与热岛强度
功能区 | 地表热环境等级面积比例 /% | 热岛强度/℃ | ||||||
极低温区 | 低温区 | 次低温区 | 中温区 | 次高温区 | 高温区 | 极高温区 | ||
居住区 | 0.000 | 0.000 | 0.665 | 14.721 | 47.334 | 35.393 | 1.886 | 3.231 |
公共管理与服务区 | 0.000 | 0.000 | 0.477 | 5.568 | 30.060 | 48.746 | 15.149 | 4.628 |
商业服务业区 | 0.000 | 0.000 | 0.881 | 9.900 | 38.116 | 43.675 | 7.429 | 3.791 |
工业区 | 0.013 | 0.056 | 0.961 | 7.731 | 23.834 | 42.882 | 24.522 | 4.994 |
仓储区 | 0.000 | 0.000 | 0.470 | 4.701 | 21.301 | 50.043 | 23.485 | 5.092 |
交通运输区 | 0.000 | 0.000 | 0.233 | 4.715 | 11.700 | 45.672 | 37.680 | 5.737 |
公共设施区 | 0.000 | 0.376 | 5.772 | 17.278 | 35.493 | 33.075 | 8.006 | 3.283 |
表6
空间自回归模型参数
参数 | 空间自回归模型 | |||
普通线性回归模型(OLS) | 空间滞后模型(SLM) | 空间误差模型(SEM) | ||
注:括号内数值表示显著性检验T或Z的统计值;***、**、*分别表示在0.001、0.01、0.05水平下显著;—为无此项。 | ||||
θ | 居住区比例 | 9.290 (14.383)*** | 1.133 (4.340)*** | 1.403 (4.207)*** |
公共管理与服务区比例 | 6.675(8.698)*** | 1.686 (5.530)*** | 1.857 (5.078)*** | |
商业服务业区比例 | 13.297 (7.670)*** | 2.420 (3.506)*** | 3.202 (4.231)*** | |
工业区比例 | 7.334 (17.846)*** | 1.392 (8.216)*** | 2.482 (8.082)*** | |
仓储区比例 | 8.995 (10.024)*** | 1.748 (4.896)*** | 2.522 (5.090)*** | |
交通运输区比例 | 9.386 (7.738)*** | 1.810 (3.740)*** | 3.768 (4.527)*** | |
公共设施区比例 | 1.917 (3.979)** | 0.439 (2.305)* | 0.694 (2.889)** | |
常数 | −0.835 (−13.237)*** | −0.198 (−7.541)*** | −2.385 (−6.529)*** | |
ρ | — | 0.921 (161.371)*** | — | |
λ | — | — | 0.946 (191.657)*** | |
R2 | 0.181 | 0.872 | 0.875 | |
LIK | −13111.900 | −9226.410 | −9227.657 | |
AIC | 26239.700 | 18470.800 | 18471.300 |
表7
各功能区升温效应比较分析
功能区 | 衰减模型参数 | 影响距离/m | |||
a/ºC | b/ºC | r | 残差均方 | ||
注:a为缓冲区内LST的极大值,b为功能区的升温幅度,r为衰减系数,括号内数值为该变量的估算值。 | |||||
居住区 | 35.360~38.138(36.749) | 0.975~3.302(2.138) | 0.993~1.002(0.998) | 0.102 | 948.910 |
公共管理与服务区 | 35.607~37.775(36.691) | 1.186~4.040(2.613) | 0.992~1.002(0.997) | 0.128 | 759.770 |
商业服务业区 | 35.705~36.389(36.047) | 2.995~4.345(3.670) | 0.997~0.999(0.998) | 0.078 | 1152.561 |
工业区 | 35.045~35.925(35.485) | 4.802~5.781(5.292) | 0.998~0.999(0.999) | 0.057 | 1544.208 |
仓储区 | 36.157~36.882(36.520) | 3.044~4.327(3.686) | 0.997~0.999(0.998) | 0.080 | 1217.147 |
交通运输区 | 35.667~36.583(36.125) | 2.766~4.062(3.414) | 0.997~0.999(0.998) | 0.089 | 1361.325 |
公共设施区 | 36.891~37.473(37.182) | −0.546~2.367(0.910) | 0.988~1.005(0.997) | 0.150 | 676.079 |
表8
功能区面积与升温效应的关系
功能区 | 升温幅度/℃ | 影响距离/m | |||||||||
微小斑块 | 小斑块 | 中斑块 | 大斑块 | 超大斑块 | 微小斑块 | 小斑块 | 中斑块 | 大斑块 | 超大斑块 | ||
居住区 | 1.627 | 1.437 | 2.178 | 2.180 | 1.693 | 567.309 | 650.785 | 1377.642 | 1456.181 | 1664.974 | |
公共管理与服务区 | 1.556 | 1.918 | 1.787 | 1.733 | 2.919 | 684.720 | 822.023 | 1151.535 | 1149.739 | 972.109 | |
商业服务业区 | 2.619 | 2.887 | 3.826 | 3.579 | 3.314 | 472.204 | 1127.670 | 1609.048 | 1655.384 | 1226.346 | |
工业区 | 2.885 | 4.093 | 5.668 | 5.894 | 3.898 | 788.053 | 972.325 | 1667.388 | 1691.926 | 1756.547 | |
仓储区 | 2.762 | 3.840 | 2.498 | 2.982 | 2.355 | 700.856 | 931.069 | 1116.608 | 1528.804 | 1679.567 | |
交通运输区 | 1.946 | 2.349 | 2.263 | 3.951 | 4.422 | 792.295 | 1128.630 | 1138.742 | 1604.556 | 1444.077 | |
公共设施区 | 0.561 | 0.928 | 1.666 | 0.861 | 1.060 | 491.907 | 425.206 | 606.390 | 1150.141 | 1794.387 |
[1] |
孟凡超, 郭军, 李明财, 等. 天津市单次极端低温过程中城市热岛对建筑负荷的影响[J]. 地理科学, 2020, 40(10) 1753-1762.
doi: 10.13249/j.cnki.sgs.2020.10.019 |
Meng Fanchao, Guo Jun, Li Mingcai et al. Impacts of urban heat island on building loads during a single extreme low-temperature process in Tianjin City. Scientia Geographica Sinica, 2020, 40(10) 1753-1762.
doi: 10.13249/j.cnki.sgs.2020.10.019 |
|
[2] |
沈中健, 曾坚. 闽南三市城镇发展与地表温度的空间关系[J]. 地理学报, 2021, 76(3) 566-583.
doi: 10.11821/dlxb202103006 |
Shen Zhongjian, Zeng Jian. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian. Acta Geographica Sinica, 2021, 76(3) 566-583.
doi: 10.11821/dlxb202103006 |
|
[3] |
Yu Zhaowu, Zhang Jinguang, Yang Gaoyuan et al. Reverse thinking: A new method from the graph perspective for evaluating and mitigating regional surface heat islands[J]. Remote Sensing, 2021, 13(6) 1127
doi: 10.3390/rs13061127 |
[4] | Huang Huanchun, Yang Hailin, Chen Yilun et al. Urban green space optimization based on a climate health risk appraisal: A case study of Beijing City, China[J]. Urban Forestry & Urban Greening, 2021, 62: 127154 |
[5] |
闫广华, 苏俊如, 管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J]. 地理科学, 2019, 39(1) 125-130.
doi: 10.13249/j.cnki.sgs.2019.01.014 |
Yan Guanghua, Su Junru, Guan Dunyi. The impact of urban architectural vertical characteristics on urban thermal environment in Zhongshan district, Dalian. Scientia Geographica Sinica, 2019, 39(1) 125-130.
doi: 10.13249/j.cnki.sgs.2019.01.014 |
|
[6] |
沈中健, 曾坚. 厦门市热岛强度与相关地表因素的空间关系研究[J]. 地理科学, 2020, 40(5) 842-852.
doi: 10.13249/j.cnki.sgs.2020.05.019 |
Shen Zhongjian, Zeng Jian. Spatial relationship of heat island intensity to correlated land surface factors in Xiamen City. Scientia Geographica Sinica, 2020, 40(5) 842-852.
doi: 10.13249/j.cnki.sgs.2020.05.019 |
|
[7] |
尹梦晗, 艾东, 叶菁. 长江经济带中部大都市气候变化与土地利用响应——以武汉市为例[J]. 中国农业大学学报, 2021, 26(6) 126-140.
doi: 10.11841/j.issn.1007-4333.2021.06.13 |
Yin Menghan, Ai Dong, Ye Jing. Climate change and land use response of metropolis of the Yangtze River Economic Belt: A case study of Wuhan. Journal of China Agricultural University, 2021, 26(6) 126-140.
doi: 10.11841/j.issn.1007-4333.2021.06.13 |
|
[8] |
杨智威, 陈颖彪, 吴志峰, 等. 基于自然区块的城市热环境空间分异性研究[J]. 地理科学进展, 2019, 38(12) 1944-1956.
doi: 10.18306/dlkxjz.2019.12.010 |
Yang Zhiwei, Chen Yingbiao, Wu Zhifeng et al. Spatial variability of urban thermal environment based on natural blocks. Progress in Geography, 2019, 38(12) 1944-1956.
doi: 10.18306/dlkxjz.2019.12.010 |
|
[9] |
武蓉蓉, 谢苗苗, 刘琦, 等. 大都市功能区块视角下的热岛影响因素空间分异[J]. 资源科学, 2020, 42(12) 2463-2474.
doi: 10.18402/resci.2020.12.16 |
Wu Rongrong, Xie Miaomiao, Liu Qi et al. Spatial variability of causative factors of heat islands from the perspective of metropolitan functional blocks. Resources Science, 2020, 42(12) 2463-2474.
doi: 10.18402/resci.2020.12.16 |
|
[10] |
刘丽香, 杨凯, 叶家慧, 等. 雄安新区城市热岛效应的空间异质性[J]. 环境工程技术学报, 2021, 11(3) 546-553.
doi: 10.12153/j.issn.1674-991X.20200194 |
Liu Lixiang, Yang Kai, Ye Jiahui et al. Spatial variation of urban heat island effect in Xiong’ an New Area. Journal of Environmental Engineering Technology, 2021, 11(3) 546-553.
doi: 10.12153/j.issn.1674-991X.20200194 |
|
[11] |
刘嘉慧, 赵小锋, 林剑艺. 基于地表能量平衡的厦门岛城市功能区人为热排放分析[J]. 地球信息科学学报, 2018, 20(7) 1026-1036.
doi: 10.12082/dqxxkx.2018.170450 |
Liu Jiahui, Zhao Xiaofeng, Lin Jianyi. Analysis of anthropogenic heat discharge of urban functional regions based on surface energy balance in Xiamen Island. Journal of Geo-information Science, 2018, 20(7) 1026-1036.
doi: 10.12082/dqxxkx.2018.170450 |
|
[12] |
Yao Lei, Xu Ying, Zhang Baolei. Effect of urban function and landscape structure on the urban heat island phenomenon in Beijing, China[J]. Landscape and Ecological Engineering, 2019, 15(4) 379-390.
doi: 10.1007/s11355-019-00388-5 |
[13] |
Min Min, Lin Chen, Duan Xuejiun et al. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing Metropolitan Area, China[J]. Sustainable Cities and Society, 2019, 50: 101637
doi: 10.1016/j.scs.2019.101637 |
[14] | Li Tong, Xu Ying, Yao Lei. Detecting urban landscape factors controlling seasonal land surface temperature: From the perspective of urban function zones[J]. Environmental Science and Pollution Research, 2021,DOI: 10.1007/s11356-021-13695-y. |
[15] | 张景奇, 史文宝, 修春亮. POI 数据在中国城市研究中的应用[J]. 地理科学, 2021, 41(1) 140-148. |
Zhang Jingqi, Shi Wenbao, Xiu Chunliang. Urban research using points of interest data in China. Scientia Geographica Sinica, 2021, 41(1) 140-148. | |
[16] |
Zhang Chengkun, Xu Liuchang, Yan Zhen et al. A glove-based POI type embedding model for extracting and identifying urban functional regions[J]. ISPRS International Journal of GEO-Information, 2021, 10(6) 372
doi: 10.3390/ijgi10060372 |
[17] |
Zhang Yaotao, Li Qingquan, Tu Wei et al. Functional urban land use recognition integrating multi-source geospatial data and cross-correlations[J]. Computers Environment and Urban Systems, 2019, 78: 101374
doi: 10.1016/j.compenvurbsys.2019.101374 |
[18] |
Cao Rui, Zhu Jiasong, Tu Wei et al. Integrating aerial and street view images for urban land use classification[J]. Remote Sensing, 2018, 10(10) 1553
doi: 10.3390/rs10101553 |
[19] |
Chen Yang, Yang Jun, Yang Ruixin et al. Contribution of urban functional zones to the spatial distribution of urban thermal environment[J]. Building and Environment, 2022, 216: 109000
doi: 10.1016/j.buildenv.2022.109000 |
[20] |
Li Xiaoting, Hu Tengyun, Gong Peng et al. Mapping essential urban land use categories in Beijing with a fast area of interest (AOI)-based method[J]. Remote Sensing, 2021, 13(3) 477
doi: 10.3390/rs13030477 |
[21] |
Liu Yunzhe, Singleton Alex, Arribas-bel Daniel et al. Identifying and understanding road-constrained areas of interest (AOIs) through spatiotemporal taxi GPS data: A case study in New York City[J]. Computers Environment and Urban Systems, 2021, 86: 101592
doi: 10.1016/j.compenvurbsys.2020.101592 |
[22] |
Jiang Yue, Lin Wenpeng. A comparative analysis of retrieval algorithms of land surface temperature from Landsat-8 data: A case study of Shanghai, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(11) 5659
doi: 10.3390/ijerph18115659 |
[23] |
Zhang Youshui, Balzter Heiko, Li Yu. Influence of impervious surface area and fractional vegetation cover on seasonal urban surface heating/cooling rates[J]. Remote Sensing, 2021, 13(7) 1263
doi: 10.3390/rs13071263 |
[24] |
Peng Yu, Wang Qinghui, Bai Lan. Identification of the key landscape metrics indicating regional temperature at different spatial scales and vegetation transpiration[J]. Ecological Indicators, 2020, 111: 106066
doi: 10.1016/j.ecolind.2020.106066 |
[25] |
Zabor Emily C, Reddy Chandana A, Tendulkar Rahul D et al. Logistic regression in clinical studies[J]. International Journal of Radiation Oncology Biology Physics, 2022, 112(2) 271-277.
doi: 10.1016/j.ijrobp.2021.08.007 |
[26] |
熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报, 2019, 74(7) 1374-1391.
doi: 10.11821/dlxb201907008 |
Xiong Junnan, Li Jin, Cheng Weiming et al. Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China. Acta Geographica Sinica, 2019, 74(7) 1374-1391.
doi: 10.11821/dlxb201907008 |
|
[27] |
沈中健, 曾坚, 梁晨. 闽南三市绿地景观格局与地表温度的空间关系[J]. 生态学杂志, 2020, 39(4) 1309-1317.
doi: 10.13292/j.1000-4890.202004.026 |
Shen Zhongjian, Zeng Jian, Liang Chen. Spatial relationship of greenspace landscape pattern with land surface temperature in three cities of southern Fujian. Chinese Journal of Ecology, 2020, 39(4) 1309-1317.
doi: 10.13292/j.1000-4890.202004.026 |
|
[28] | Zhou Decheng, Xiao Jingfeng, Frolking Steve et al. Urbanization contributes little to global warming but substantially intensifies local and regional land surface warming[J]. Earths Future, 2022, 10(5) e2021EF002401 |
[29] | Monteiro Madalena Vaz, Doick Kieron J, Handley Phillip et al. The impact of greenspace size on the extent of local nocturnal air temperature cooling in London[J]. Urban Forestry & Urban Greening, 2016, 16: 160-169. |
[30] |
仇宽彪, 张慧, 高吉喜, 等. 上海城市林地斑块冷岛效应的城乡梯度变化[J]. 生态学杂志, 2021, 40(5) 1409-1418.
doi: 10.13292/j.1000-4890.202105.018 |
Qiu Kuanbiao, Zhang Hui, Gao Jixi et al. Variation of cool island effect for urban forest patches across an urban-rural gradient in Shanghai. Chinese Journal of Ecology, 2021, 40(5) 1409-1418.
doi: 10.13292/j.1000-4890.202105.018 |
|
[31] |
匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018, 38(10) 1643-1652.
doi: 10.13249/j.cnki.sgs.2018.10.008 |
Kuang Wenhui. Advance and future prospects of urban land use/cover change and ecological regulation of thermal environment. Scientia Geographica Sinica, 2018, 38(10) 1643-1652.
doi: 10.13249/j.cnki.sgs.2018.10.008 |
|
[32] |
Zhang Xinmin, Estoque Ronald, Murayama Yuji et al. Capturing urban heat island formation in a subtropical city of China based on landsat images: Implications for sustainable urban development[J]. Environmental Monitoring and Assessment, 2021, 193(3) 130
doi: 10.1007/s10661-021-08890-w |
[33] |
Gao Sihang, Zhan Qingming, Yang Chen et al. The diversified impacts of urban morphology on land surface temperature among urban functional zones[J]. International Journal of Environmental Research and Public Health, 2020, 17(24) 9578
doi: 10.3390/ijerph17249578 |
[34] |
Rao Yongheng, Xu Yang, Zhang Jianjun et al. Does subclassified industrial land have a characteristic impact on land surface temperatures? Evidence for and implications of coal and steel processing industries in a Chinese mining city[J]. Ecological Indicators, 2018, 89: 22-34.
doi: 10.1016/j.ecolind.2018.01.058 |
[35] |
Ma Yuling, Zhang Shaohua, Yang Kun et al. Influence of spatiotemporal pattern changes of impervious surface of urban megaregion on thermal environment: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area of China[J]. Ecological Indicators, 2021, 121: 107106
doi: 10.1016/j.ecolind.2020.107106 |
[36] | 黄亚平, 卢有朋, 单卓然, 等. 武汉市主城区热岛空间格局及其影响因素研究[J]. 城市规划, 2019, 43(4) 41-47+52. |
Huang Yaping, Lu Youpeng, Shan Zhuoran et al. Study on spatial layout and influencing factors of heat island in the main urban area of Wuhan. City Planning Review, 2019, 43(4) 41-47+52. |
[1] | 乔治, 卢应爽, 贺曈, 孙宗耀, 徐新良, 杨俊. 城市热岛斑块遥感识别及空间扩张路径研究——以北京市为例[J]. 地理科学, 2022, 42(8): 1492-1501. |
[2] | 黄晓军, 宋涛, 王博, 郑殿元, 祁明月. 土地利用规模−结构−形态演变对城市热环境的影响——以西安市主城区为例[J]. 地理科学, 2022, 42(5): 926-937. |
[3] | 朱跃, 杨兴柱, 杨周, 郑义刚, 杨万明, 顾寒月. 主体功能视角下皖南旅游区乡村多功能演化特征与影响机制[J]. 地理科学, 2021, 41(5): 815-823. |
[4] | 邓玉娇, 王捷纯, 洪莹莹, 谭浩波, 陈靖扬, 向昆仑. 粤港澳大湾区气溶胶对白天城市热岛强度的影响[J]. 地理科学, 2021, 41(12): 2213-2221. |
[5] | 黄群芳. 城市空间形态对城市热岛效应的多尺度影响研究进展[J]. 地理科学, 2021, 41(10): 1832-1842. |
[6] | 张景奇, 史文宝, 修春亮. POI数据在中国城市研究中的应用[J]. 地理科学, 2021, 41(1): 140-148. |
[7] | 赵雪雁, 苏慧珍, 何小风, 介永庆, 母方方, 薛冰. 生计风险及其对重点生态功能区农户生活满意度的影响[J]. 地理科学, 2020, 40(7): 1124-1133. |
[8] | 夏函, 张万顺, 彭虹, 李琳, 黄攀攀, 夏晶晶. 基于主体功能区规划的中国城市化地区生态功能评估[J]. 地理科学, 2020, 40(6): 882-889. |
[9] | 沈中健, 曾坚. 厦门市热岛强度与相关地表因素的空间关系研究[J]. 地理科学, 2020, 40(5): 842-852. |
[10] | 刘敏, 姜会明, 姜天龙. 农机投入对农业GTFP影响及门槛效应的区域差异分析[J]. 地理科学, 2020, 40(12): 2037-2045. |
[11] | 孟凡超, 郭军, 李明财, 张雷, 张瑞雪. 天津市单次极端低温过程中城市热岛对建筑负荷的影响[J]. 地理科学, 2020, 40(10): 1753-1762. |
[12] | 闫广华,苏俊如,管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J]. 地理科学, 2019, 39(1): 125-130. |
[13] | 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018, 38(10): 1643-1652. |
[14] | 黄群芳, 陆玉麒. 北京地区城市热岛强度长期变化特征及气候学影响机制[J]. 地理科学, 2018, 38(10): 1715-1723. |
[15] | 王美雅, 徐涵秋, 付伟, 林中立, 李霞, 张博博, 唐菲. 城市地表水体时空演变及其对热环境的影响[J]. 地理科学, 2016, 36(7): 1099-1105. |
|