地理科学 ›› 2022, Vol. 42 ›› Issue (9): 1646-1653.doi: 10.13249/j.cnki.sgs.2022.09.014
收稿日期:
2021-09-01
修回日期:
2021-12-03
出版日期:
2022-09-10
发布日期:
2022-11-14
通讯作者:
刘剑宇
E-mail:mingzhe@cug.edu.cn;liujy@cug.edu.cn
作者简介:
俞明哲(2000-)男,湖北武汉人,硕士研究生,研究方向为洪水模拟与预测研究。E-mail: mingzhe@cug.edu.cn
基金资助:
Yu Mingzhe(), Liu Jianyu(
), You Yuanyuan, Liu Cuiyan
Received:
2021-09-01
Revised:
2021-12-03
Online:
2022-09-10
Published:
2022-11-14
Contact:
Liu Jianyu
E-mail:mingzhe@cug.edu.cn;liujy@cug.edu.cn
Supported by:
摘要:
筛选全球5839个水文站逐日径流数据,采用超阈值采样法提取洪水发生频率及时间,将各季节最大日流量作为季节洪水量级,以优选的多个大尺度气候因子的最佳前置月份序列作为潜在预报因子,基于贝叶斯模型平均法构建全球尺度洪水中长期预报模型,并利用均方误差技术指数(MSESS)评价模型的预报效果。结果表明:全球范围内,洪水量级和频率模拟预报效果合格(0.6>MSESS>0.2)的水文站点占比分别为48%和28%;利用前置季节气候因子数据,驱动所构建的洪水中长期预报模型,有效预报了2020年鄱阳湖流域洪水量级将异常偏高。
中图分类号:
俞明哲, 刘剑宇, 游元媛, 刘翠艳. 基于贝叶斯模型平均的全球洪水中长期预报评估研究[J]. 地理科学, 2022, 42(9): 1646-1653.
Yu Mingzhe, Liu Jianyu, You Yuanyuan, Liu Cuiyan. Mid-long Term Global Flood Prediction Based on Bayesian Model Averaging[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(9): 1646-1653.
表1
气候因子数据信息
气候因子 | 简介 |
AMO | 大西洋多年代际振荡,由北大西洋海温变化的模式定义 |
AO | 北极涛动,以北极为中心,位于20°N以北的海平面气压异常 |
EA | 东大西洋低频率变率的第二大显著模态 |
EAWR | 东大西洋/西俄罗斯涛动指数,全年影响欧亚大陆的3个突出的遥相关模式之一 |
NAO | 北大西洋涛动,是北大西洋海平面气压差(SLP)在冰岛低压和亚速尔高压之间波动的天气现象 |
Niño 3.4 SST | 国际日期变更线到南美洲海岸横跨太平洋的平均赤道海温异常 |
Niño 4 SST | 赤道中部太平洋的海温异常 |
PDO | 太平洋年代际振荡,以中纬度太平洋海盆为中心的强周期性海洋-大气气候变化模式 |
表2
大尺度气候因子与洪水量级/频率站点最佳前置季节占比
前置季节 | AMO | AO | EA | EAWR | NAO | Niño 3.4 | Niño 4 | PDO |
注:各气候因子含义见 | ||||||||
一 | 27%/28% | 22%/20% | 25%/22% | 19%/19% | 19%/17% | 23%/20% | 17%/18% | 25%/20% |
二 | 20%/24% | 28%/31% | 39%/35% | 40%/35% | 26%/30% | 30%/30% | 35%/30% | 33%/35% |
三 | 17%/18% | 22%/23% | 21%/24% | 24%/27% | 28%/27% | 25%/22% | 27%/27% | 27%/25% |
四 | 36%/30% | 28%/26% | 15%/19% | 17%/19% | 27%/24% | 22%/28% | 21%/25% | 15%/20% |
[1] | Doocy S, Daniels A, Murray S. The human impact of floods: A historical review of events 1980-2009 and systematic literature review[J]. Plos Currents, 2013,doi: 10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a. |
[2] |
Radziejewski M, Kundzewicz Z W. Detectability of changes in hydrological records / Possibilite de detecter les changements dans les chroniques hydrologiques[J]. Hydrological Sciences Journal, 2004, 49(1) 39-51.
doi: 10.1623/hysj.49.1.39.54002 |
[3] | Radziejewski M, Kundzewicz Z W. Detectability of changes in hydrological records (vol 49, pg 39, 2004)[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2004, 49(2) 351-352. |
[4] |
杨金玲, 李鸿雁, 李秀斌. 基于水文循环原理的中国长期径流预报方法研究[J]. 吉林水利, 2011(7) 1-5.
doi: 10.3969/j.issn.1009-2846.2011.07.002 |
Yang Jinling, Li Hongyan, Li Xiubin. Research on long-term runoff forecast method based on hydrological cycle theory in China. Jilin Water Resources, 2011(7) 1-5.
doi: 10.3969/j.issn.1009-2846.2011.07.002 |
|
[5] | 王富强, 霍风霖. 中长期水文预报方法研究综述[J]. 人民黄河, 2010, 32(3) 25-28. |
Wang Fuqiang, Huo Fenglin. A review of medium - and long-term hydrological forecasting methods. Yellow River, 2010, 32(3) 25-28. | |
[6] |
Makkeasorn A, Chang N B, Zhou X. Short-term streamflow forecasting with global climate change implications - A comparative study between genetic programming and neural network models[J]. Journal of Hydrology, 2008, 352(3-4) 336-354.
doi: 10.1016/j.jhydrol.2008.01.023 |
[7] | Nayak P C, Sudheer K P, Rangan D M. Short-term flood forecasting with a neurofuzzy model[J]. Water Resources Research, 2005, 41(4) W04004 |
[8] | Gabriela N, Hans D M, Matteo G. What will the weather do? Forecasting flood losses based on Oscillation Indices[J]. Earths Future, 2020, 8(3) e2019EF001450 |
[9] | 赵铜铁钢, 杨大文, 李明亮. 超越概率贝叶斯判别分析方法及其在中长期径流预报中的应用[J]. 水利学报, 2011, 42(6) 692-699. |
Zhao Tongtiegang, Yang Dawen, Li Mingliang. Random simulation and environmental risk assessment for water system based on Markov Switching theory. Journal of Hydraulic Engineering, 2011, 42(6) 692-699. | |
[10] | 石继海, 宋松柏, 李航. 中长期径流预报模型优选研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(7) 147-154. |
Shi Jihai, Song Songbo, Li Hang. Optimization of mid-long term runoff forecasting models. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(7) 147-154. | |
[11] | 刘冀. 径流分类组合预报方法及其应用研究[D]. 大连: 大连理工大学, 2008. |
Liu Ji. Study on the method and application of runoff classification ensemble forecasting. Dalian: Dalian University of Technology, 2008. | |
[12] | Liang Z M, Dai R, Wang J. Study on forecast combination of different hydrological models by Bayesian model averaging[J]. Journal of Hydroelectric Engineering, 2010, 29(2) 114-118. |
[13] |
Duan Q Y, Newsha K A, Gao X G. Multi-model ensemble hydrologic prediction using Bayesian model averaging[J]. Advances in Water Resources, 2007, 30(5) 1371-1386.
doi: 10.1016/j.advwatres.2006.11.014 |
[14] | 梁忠民, 戴荣, 王军. 基于贝叶斯模型平均理论的水文模型合成预报研究[J]. 水力发电学报, 2010, 29(2) 114-118. |
Liang Zhongmin, Dai Rong, Wang Jun. Study on forecast combination of different hydrological models by Bayesian model averaging. Journal of Hydroelecteic Engineering, 2010, 29(2) 114-118. | |
[15] |
Gudmundsson L, Leonard M, Hong Do X. Observed trends in global indicators of mean and extreme streamflow[J]. Geophysical Research Letters, 2019, 46(2) 756-766.
doi: 10.1029/2018GL079725 |
[16] |
Peter G, Lukas G I. Seneviratne Sonia. Regional scaling of annual mean precipitation and water availability with global temperature change[J]. Earth System Dynamics, 2018, 9(1) 227-240.
doi: 10.5194/esd-9-227-2018 |
[17] |
Hong D X, Westra S, Leonard M. A global-scale investigation of trends in annual maximum streamflow[J]. Journal of Hydrology, 2017, 552: 28-43.
doi: 10.1016/j.jhydrol.2017.06.015 |
[18] |
Lee D, Ward P, Block P. Attribution of large-scale climate patterns to seasonal peak-flow and prospects for prediction globally[J]. Water Resources Research, 2018, 54(2) 916-938.
doi: 10.1002/2017WR021205 |
[19] |
Milly P C D, Dunne K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005, 438(7066) 347-350.
doi: 10.1038/nature04312 |
[20] | 刘剑宇, 张强, 顾西辉. 鄱阳湖流域洪水变化特征及气候影响研究[J]. 地理科学, 2016, 36(8) 1234-1242. |
Liu Jianyu, Zhang Qiang, Gu Xihui. Floods characteristics and impacts from climate indices in the Poyang Lake Basin. Geographical Science, 2016, 36(8) 1234-1242. | |
[21] |
Mallakpour I, Villarini G. The changing nature of flooding across the central United States[J]. Nature Climate Change, 2015, 5(3) 250-254.
doi: 10.1038/nclimate2516 |
[22] |
Raftery A E, Gneiting T, Balabdaoui F. Using Bayesian model averaging to calibrate forecast ensembles[J]. Monthly Weather Review, 2005, 133(5) 1155-1174.
doi: 10.1175/MWR2906.1 |
[23] | Wilks D S. Forecast verification. In: Statistical Methods in the Atmospheric Sciences. 2011: 301-394. |
[24] |
Jolliffe I T, Stephenson D B. Comments on "Discussion of verification concepts in forecast verification: A practitioner’s guide in atmospheric science"[J]. Weather and Forecasting, 2005, 20(5) 796-800.
doi: 10.1175/WAF877.1 |
[25] |
Wang Z Y, Plate E J. Recent flood disasters in China[J]. Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering, 2002, 154(3) 177-188.
doi: 10.1680/wame.2002.154.3.177 |
[26] | Du X Z, Li X Y, Wang H L. Multi-model ensemble runoff simulation based on Bayesian Model Averaging Method and model structure uncertainty analysis[J]. Journal of China Hydrology, 2014, 34(3) 6-10. |
[27] |
Arnell N W, Gosling S N. The impacts of climate change on river flood risk at the global scale[J]. Climatic Change, 2016, 134(3) 387-401.
doi: 10.1007/s10584-014-1084-5 |
[28] |
Winsemius H C, Aerts J C J H, Beek L P H V. Global drivers of future river flood risk[J]. Nature Climate Change, 2016, 6(4) 381-385.
doi: 10.1038/nclimate2893 |
[29] | Sassi C, Carvalho G D, De Castro L M. One decade of environmental disasters in Brazil: The action of veterinary rescue teams[J]. Frontiers in Public Health, 2021, 9: 1-6. |
[30] | 夏军, 王惠筠, 甘瑶瑶. 中国暴雨洪涝预报方法的研究进展[J]. 暴雨灾害, 2019, 38(5) 416-421. |
Xia Jun, Wang Huijun, Gan Yaoyao. Research progress in forecasting methods of rainstorm and flood disaster in China. Torrential Rain and Disasters, 2019, 38(5) 416-421. | |
[31] | 宋润虎. 多元线性回归与逐步回归在洪水预报中的应用——以南汀河中长期洪水预报为例[J]. 人民长江, 2012, 43(S1) 122-125. |
Song Runhu. Application of multiple linear regression and stepwise regression in flood forecasting: Taking Nantinghe River as an example. Yangtze River, 2012, 43(S1) 122-125. | |
[32] |
Shukla S, Lettenmaier D P. Seasonal hydrologic prediction in the United States: Understanding the role of initial hydrologic conditions and seasonal climate forecast skill[J]. Hydrology and Earth System Sciences, 2011, 15(11) 3529-3538.
doi: 10.5194/hess-15-3529-2011 |
[33] |
Bennett B, Leonard M, Deng Y. An empirical investigation into the effect of antecedent precipitation on flood volume[J]. Journal of Hydrology, 2018, 567: 435-445.
doi: 10.1016/j.jhydrol.2018.10.025 |
[34] | Sharma A, Wasko C, Lettenmaier D P. If precipitation extremes are increasing, Why aren't floods?[J]. Water Resources Research, 2 018, 54(11): 8545-8551. |
[35] |
Nied M, Hundecha Y, Merz B. Flood-initiating catchment conditions: A spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin[J]. Hydrology and Earth System Sciences, 2013, 17(4) 1401-1414.
doi: 10.5194/hess-17-1401-2013 |
[36] |
Bloschl G, Hall J, Parajka J. Changing climate shifts timing of European floods[J]. Science, 2017, 357(6351) 588-590.
doi: 10.1126/science.aan2506 |
[1] | 陈诗越, 强柳燕, 张风菊, 黎心泽. 黄河下游地区堌堆遗址时空分布特征及其与黄河洪水关系[J]. 地理科学, 2020, 40(7): 1202-1209. |
[2] | 金君良, 何健, 贺瑞敏, 刘翠善, 张建云, 王国庆, 鲍振鑫. 气候变化对淮河流域水资源及极端洪水事件的影响[J]. 地理科学, 2017, 37(8): 1226-1233. |
[3] | 刘剑宇, 张强, 顾西辉, 肖名忠, 孔冬冬. 鄱阳湖流域洪水变化特征及气候影响研究[J]. 地理科学, 2016, 36(8): 1234-1242. |
[4] | 郭永强, 黄春长, 庞奖励, 尚瑞清, 周亚利. 汉江上游现代大洪水滞流沉积物的粒度分布特征研究[J]. 地理科学, 2014, 34(11): 1369-1376. |
[5] | 殷杰, 尹占娥, 于大鹏, 许世远. 风暴洪水主要承灾体脆弱性分析——黄浦江案例[J]. 地理科学, 2012, 32(9): 1155-1160. |
[6] | 李晓刚, 黄春长, 庞奖励, 查小春, 周亚利, 王恒松. 汉江上游白河段万年尺度洪水水文学研究[J]. 地理科学, 2012, 32(8): 971-978. |
[7] | 李勋贵, 魏霞. 汛期洪水弃水与水土流失耦合风险关系分析[J]. 地理科学, 2011, 31(9): 1138-1143. |
[8] | 汪哲荪, 金菊良, 魏一鸣, 王宗志, 周玉良. 加速遗传算法在马斯京根洪水演算模型参数估计中的应用[J]. 地理科学, 2010, 30(6): 916-920. |
[9] | 王军, 高红山, 潘保田, 杜功元, 李宗盟, 曹泊, 吉亚鹏. 早全新世沙沟河古洪水沉积及其对气候变化的响应[J]. 地理科学, 2010, 30(6): 943-949. |
[10] | 查小春, 黄春长, 庞奖励, 李瑜琴, 古明兴. 泾河流域不同时间尺度洪水序列频率分析对比研究[J]. 地理科学, 2009, 29(6): 858-863. |
[11] | 李谢辉, 王磊, 谭灵芝, 郑奕. 渭河下游河流沿线区域洪水灾害风险评价[J]. 地理科学, 2009, 29(5): 733-739. |
[12] | 赵景波, 王长燕. 兰州黄河高漫滩沉积与洪水变化研究[J]. 地理科学, 2009, 29(3): 409-414. |
[13] | 陈莹, 许有鹏, 尹义星. 土地利用/覆被变化下的暴雨径流过程模拟分析——以太湖上游西苕溪流域为例[J]. 地理科学, 2009, 29(1): 117-123. |
[14] | 何慧, 覃志年, 庞芳, 李艳兰. 邕江洪水的特征及其气候成因研究[J]. 地理科学, 2007, 27(4): 506-511. |
[15] | 赵景波, 蔡晓薇, 王长燕. 西安高陵渭河近120年来的洪水演变[J]. 地理科学, 2007, 27(2): 225-230. |
|