[1] |
解明礼, 巨能攀, 赵建军, 等. 区域地质灾害易发性分级方法对比分析研究[J]. 武汉大学学报(信息科学版), 2021, 46(7) 1-14.
|
|
Xie Mingli, Ju Nengpan, Zhao Jianjun et al. Comparative analysis and research on classification methods of regional geological hazard susceptibility. Journal of Wuhan University (Information Science Edition), 2021, 46(7) 1-14.
|
[2] |
Arabameri, Pradhan, Rezaei et al. Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR–RF Integrated Model and multiresolution DEMs[J]. Remote Sensing, 2019, 11(9) 999
doi: 10.3390/rs11090999
|
[3] |
刘传正, 陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 2020, 28(2) 375-383.
|
|
Liu Chuanzheng, Chen Chunli. The prevention and control effect of geological disasters in China and countermeasures. Journal of Engineering Geology, 2020, 28(2) 375-383.
|
[4] |
Aditian A, Kubota T, Shinohara Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia[J]. Geomorphology, 2018, 318(OCT.1) 101-111.
|
[5] |
Chen W, Xie X, Peng J et al. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based Random Forest method[J]. Catena, 2018, 164: 135-149.
doi: 10.1016/j.catena.2018.01.012
|
[6] |
Hu Q, Zhou Y, Wang S et al. Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin[J]. Geomorphology, 2019, 351: 106-975.
|
[7] |
许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010, 18(1) 15-26.
doi: 10.3969/j.issn.1004-9665.2010.01.003
|
|
Xu Chong, Dai Fuchu, Yao Xin et al. Landslide susceptibility evaluation of Wenchuan earthquake based on GIS and deterministic coefficient analysis method. Journal of Engineering Geology, 2010, 18(1) 15-26.
doi: 10.3969/j.issn.1004-9665.2010.01.003
|
[8] |
冯杭建, 周爱国, 唐小明, 等. 基于确定性系数的降雨型滑坡影响因子敏感性分析[J]. 工程地质学报, 2017, 25(2) 436-446.
|
|
Feng Hangjian, Zhou Aiguo, Tang Xiaoming et al. Sensitivity analysis of influencing factors of rainfall induced landslide based on deterministic coefficient. Journal of Engineering Geology, 2017, 25(2) 436-446.
|
[9] |
王雷, 吴君平, 赵冰雪, 等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2020, 31(3) 96-103.
|
|
Wang Lei, Wu Junping, Zhao Bingxue et al. Evaluation of geological hazard susceptibility in Chizhou, Anhui Province based on GIS and information model. Chinese Journal of Geological Hazards and Prevention, 2020, 31(3) 96-103.
|
[10] |
陈绪钰, 倪化勇, 李明辉, 等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学, 2021, 36(2) 71-78.
doi: 10.3969/j.issn.1000-811X.2021.02.013
|
|
Chen Xuyu, Ni Huayong, Li Minghui et al. Evaluation of geological disaster susceptibility based on weighted information and iterative self-organizing clustering. Disaster Science, 2021, 36(2) 71-78.
doi: 10.3969/j.issn.1000-811X.2021.02.013
|
[11] |
范强, 巨能攀, 向喜琼, 等. 证据权法在滑坡易发性分区中的应用——以贵州桐梓河流域为例[J]. 灾害学, 2015, 30(1) 124-129.
doi: 10.3969/j.issn.1000-811X.2015.01.024
|
|
Fan Qiang, Ju Nengpan, Xiang Xiqiong et al. Application of weight of evidence method in landslide susceptibility zoning - Taking Tongzi River basin in Guizhou as an example. Disaster Science, 2015, 30(1) 124-129.
doi: 10.3969/j.issn.1000-811X.2015.01.024
|
[12] |
刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7) 1085-1091.
|
|
Liu Jian, Li Shulin, Chen Tao. Landslide susceptibility evaluation based on optimized random forest model. Journal of Wuhan University (Information Science Edition), 2018, 43(7) 1085-1091.
|
[13] |
Dou J, Yunus A P, Tien Bui D et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 2019b; 662: 332-346.
|
[14] |
武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报(信息科学版), 2013(12) 1499-1503.
|
|
Wu Xueling, Ren Fu, Niu Ruiqing et al. Support vector machine model for landslide susceptibility evaluation supported by slope unit. Journal of Wuhan University (Information Science Edition), 2013(12) 1499-1503.
|
[15] |
邱海军, 曹明明, 刘闻, 等. 基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究[J]. 地理科学, 2014, 34(1) 110-115.
|
|
Qiu Haijun, Cao Mingming, Liu Wen et al. Study on sensitivity evaluation and result test of regional landslide disaster based on three different models. Scientia Geographica Sinica, 2014, 34(1) 110-115.
|
[16] |
Chen Wei, Zhang Shuai, Li Renwei et al. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree forlandslide susceptibility modeling[J]. Science of the Total Environment, 2018, 644: 1006-1018.
doi: 10.1016/j.scitotenv.2018.06.389
|
[17] |
Yi Yaning, Zhang Zhijie, Zhang Wanchang et al. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena, 2020,195:104851.
|
[18] |
Pradhan B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences, 2013, 51: 350-365.
|
[19] |
田乃满, 兰恒星, 伍宇明, 等. 径向基函数神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12) 2304-2316.
doi: 10.12082/dqxxkx.2020.190766
|
|
Tian Naiman, Lan Hengxing, Wu Yuming et al. Performance comparison of radial basis function neural network and decision tree model in landslide susceptibility analysis. Journal of Geo Information Science, 2020, 22(12) 2304-2316.
doi: 10.12082/dqxxkx.2020.190766
|
[20] |
郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12) 4299-4312.
|
|
Guo Zizheng, Yin Kunlong, Fu Sheng et al. Landslide susceptibility evaluation based on GIS and WOE-BP model. Geoscience, 2019, 44(12) 4299-4312.
|
[21] |
李远远, 梅红波, 任晓杰, 等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报, 2018, 20(12) 1699-1709.
doi: 10.12082/dqxxkx.2018.180349
|
|
Li Yuanyuan, Mei Hongbo, Ren Xiaojie et al. Evaluation of geological hazard susceptibility based on deterministic coefficient and support vector machine. Journal of Geo Information Science, 2018, 20(12) 1699-1709.
doi: 10.12082/dqxxkx.2018.180349
|
[22] |
徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例[J]. 武汉大学学报:信息科学版, 2020, 45(8) 1214-1222.
|
|
Xu Shenghua, Liu Jiping, Wang Xianghong et al. Landslide hazard susceptibility evaluation method based on entropy index and support vector machine——Taking Shaanxi Province as an example. Journal of Wuhan University: Information Science Edition, 2020, 45(8) 1214-1222.
|
[23] |
马保罡. 基于GIS的杂谷脑河下游段地质灾害危险性评价[D]. 成都: 成都理工大学, 2016.
|
|
Ma Baogang. Geological hazard risk assessment of the lower reaches of Zagunao River based on GIS. Chengdu: Chengdu University of Technology, 2016.
|
[24] |
毛硕. 基于GIS的薛城地区滑坡地质灾害危险性评价[D]. 成都: 成都理工大学, 2016.
|
|
Mao Shuo. Risk assessment of landslide geological hazards in Xuecheng area based on GIS. Chengdu: Chengdu University of Technology, 2016.
|
[25] |
杨根云, 周伟, 方教勇. 基于信息量模型和数据标准化的滑坡易发性评价[J]. 地球信息科学学报, 2018, 20(5) 674-683.
doi: 10.12082/dqxxkx.2018.170535
|
|
Yang Genyun, Zhou Wei, Fang Jiaoyong. Landslide susceptibility evaluation based on information model and data standardization. Journal of Geo Information Science, 2018, 20(5) 674-683.
doi: 10.12082/dqxxkx.2018.170535
|
[26] |
Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2) 123-140.
|
[27] |
Eray Sevgen, Sultan Kocaman, Hakan A et al. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and Random Forest[J]. Sensors, 2019, 19(18) 3940
doi: 10.3390/s19183940
|
[28] |
吴孝情, 赖成光, 陈晓宏, 等. 基于随机森林权重的滑坡危险性评价: 以东江流域为例[J]. 自然灾害学报, 2017, 26(5) 119-129.
|
|
Wu Xiaoqing, Lai Chengguang, Chen Xiaohong et al. Landslide risk assessment based on random forest weight: Taking Dongjiang River Basin as an example. Journal of Natural Disasters, 2017, 26(5) 119-129.
|
[29] |
王世宝, 庄建琦, 樊宏宇, 等. 基于频率比与集成学习的滑坡易发性评价—以金沙江上游巴塘—德格河段为例[J/OL]. 工程地质学报, 2021. http://kns.cnki.net/kcms/detail/11.3249.P.20210514.1018.004.html.
|
|
Wang Shibao, Zhuang Jianqi, Fan Hongyu et al. Landslide susceptibility evaluation based on frequency ratio and ensemble learning -- Taking Batang dege reach of the upper reaches of Jinsha River as an example. Journal of Engineering Geology, 2021.http://kns.cnki.net/kcms/detail/11.3249.P.20210514.1018.004.html.
|
[30] |
Powell M J D. Radial basis functions for multivariable interpolation: A review[J]. Algorithms for Approximation. 1987, 143-167.
|
[31] |
Broomhead D S, Jones R, McWhirter J G et al. Systolic array for nonlinear multidimensional interpolation using radial basis functions. Electronics Letters. 1990, 26(1): 7-9.
|
[32] |
周超, 殷坤龙, 曹颖, 等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学, 2020, 45(6) 1865-1876.
|
|
Zhou Chao, Yin Kunlong, Cao Ying et al. Landslide susceptibility evaluation in the Three Gorges Reservoir Area based on the coupling model of ensemble learning and radial basis function neural network. Geoscience, 2020, 45(6) 1865-1876.
|
[33] |
赵彬. 基于GIS的汶川地震地质灾害危险性评价研究[D]. 北京: 首都师范大学, 2011.
|
|
Zhao Bin. Study on risk assessment of Wenchuan earthquake geological disaster based on GIS. Beijing: Capital Normal University, 2011.
|
[34] |
汤国安, 刘学军, 闾国年. 数字高程模型及地学分析的原理与方法[M]. 北京: 科学出版社, 2005.
|
|
Tang Guoan, Liu Xuejun, Lyu Guonian. Principles and methods of digital elevation model and geoscience analysis. Beijing: Science Press, 2005.
|
[35] |
彭令. 三峡库区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学, 2013.
|
|
Peng Ling. Study on landslide risk assessment in the Three Gorges Reservoir area. Wuhan: China University of Geosciences, 2013.
|
[36] |
闫满存, 王光谦. 基于GIS的澜沧江下游区滑坡灾害危险性分析[J]. 地理科学, 2007(3) 365-370.
doi: 10.3969/j.issn.1000-0690.2007.03.013
|
|
Yan Mancun, Wang Guangqian. Risk analysis of landslide disaster in the lower reaches of Lancang River based on GIS. Scientia Geographica Sinica, 2007(3) 365-370.
doi: 10.3969/j.issn.1000-0690.2007.03.013
|
[37] |
中国地震局. GB 18306 ― 2015《中国地震动参数区划图》[M]. 北京: 中国标准出版社, 2015.
|
|
China Earthquake Administration. GB 18306 ― 2015 “Regional Map of Earthquake Parameters in China”. Beijing: China Standard Press, 2015.
|
[38] |
郭有金. 基于集成学习算法的西安市滑坡灾害易发性评价[D]. 西安: 西安科技大学, 2020.
|
|
Guo Youjin. Evaluation of landslide susceptibility in Xi’an based on ensemble learning algorithm. Xi’an: Xi’an University of Science and Technology, 2020.
|