地理科学 ›› 2022, Vol. 42 ›› Issue (9): 1676-1684.doi: 10.13249/j.cnki.sgs.2022.09.017
• • 上一篇
樊云龙1(), 王懿萱2, 罗光杰1, 任大银1, 李宗盟3, 刘芬良4, 罗绪强1, 唐亮1, 白庆玲1, 黎成都1
收稿日期:
2021-08-06
修回日期:
2021-12-10
出版日期:
2022-09-10
发布日期:
2022-11-14
作者简介:
樊云龙(1983−),男,山西静乐人,副教授,主要从事喀斯特地貌与环境研究。E-mail: karst-fan@qq.com
基金资助:
Fan Yunlong1(), Wang Yixuan2, Luo Guangjie1, Ren Dayin1, Li Zongmeng3, Liu Fenliang4, Luo Xuqiang1, Tang Liang1, Bai Qingling1, Li Chengdu1
Received:
2021-08-06
Revised:
2021-12-10
Online:
2022-09-10
Published:
2022-11-14
Supported by:
摘要:
对贵州清水江上游马寨、翁东、三江、施洞沿江4个剖面的阶地特征、年代学结果进行了综合分析。发现以凯里断层为界,上游地区的马寨和翁东2个剖面的T2阶地形成时代约为51~57 ka B.P.,T1阶地的形成时代约为25 ka B.P.,下游地区的三江和施洞2个剖面的T2阶地形成时代约为122~102 ka B.P.,T1阶地的形成时代约为78 ka B.P.。选取各剖面的T2阶地的基座高度来计算了河流下切速率,发现上游地区2个剖面(马寨、翁东)的河流下切速率较接近,约为0.41~0.34 m/ka,明显高于下游地区的2个剖面(三江、施洞)的0.16~0.20 m/ka,表现为上游下切速率高,越往下游方向下切速率逐渐降低。这表明自晚更新世以来,清水江上游区域受到构造作用的影响而发生差异抬升,具体表现为西部构造抬升幅度大,阶地下切速率快;东部构造抬升幅度小,阶地下切速率慢。
中图分类号:
樊云龙, 王懿萱, 罗光杰, 任大银, 李宗盟, 刘芬良, 罗绪强, 唐亮, 白庆玲, 黎成都. 晚更新世以来贵州清水江阶地发育及地貌意义[J]. 地理科学, 2022, 42(9): 1676-1684.
Fan Yunlong, Wang Yixuan, Luo Guangjie, Ren Dayin, Li Zongmeng, Liu Fenliang, Luo Xuqiang, Tang Liang, Bai Qingling, Li Chengdu. The Development of Terraces and the Implications for the Geomorphologic Evolution of the Qingshuijiang River in Guizhou Plateau Since the Late Pleistocene[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(9): 1676-1684.
表1
清水江阶地OSL测年结果
采样位置 | 样品编号 | 采样深度/m | K/% | Th/(mg/L) | U/(mg/L) | 环境剂量率/(Gy/Ka) | 等效剂量/Gy | 年龄/ka B.P. |
马寨T2 | QMZQ2-2 | 2.0 | 0.76±0.04 | 16.10±0.44 | 3.42±0.12 | 2.87±0.20 | 146.6±18.7 | 51.1±7.4 |
马寨T1 | QMZQ1-1 | 1.0 | 0.69±0.03 | 5.82±0.20 | 1.38±0.06 | 1.74±0.12 | 44.5±2.3 | 25.5±2.2 |
翁东T2 | QWD2-1 | 1.0 | 0.79±0.04 | 13.9±0.39 | 3.95±0.14 | 2.96±0.20 | 170.9±8.8 | 57.7±4.9 |
三江T2 | QSJC2-2 | 1.0 | 0.89±0.04 | 11.50±0.32 | 3.50±0.12 | 2.49±0.17 | 304.7±17.3 | 122.3±10.8 |
施洞T2 | QSD2-1 | 3.0 | 1.46±0.05 | 11.30±0.32 | 2.18±0.08 | 2.95±0.21 | 305.0±22.8 | 103.5±10.6 |
施洞T2 | QSD3-1 | 1.0 | 1.46±0.05 | 10.60±0.30 | 2.25±0.09 | 2.77±0.19 | 283.4±19.1 | 102.3±9.9 |
施洞T1 | QSD1-1 | 1.0 | 1.44±0.05 | 11.20±0.31 | 2.09±0.08 | 2.82±0.20 | 222.5±8.6 | 78.8±6.3 |
[1] |
Bridgland D R, Westaway R. Quaternary fluvial archives and landscape evolution a global synthesis[J]. Proceedings of the Geologists’ Association, 2014, 125(5-6) 600-629.
doi: 10.1016/j.pgeola.2014.10.009 |
[2] |
胡春生, 潘保田, 高红山, 等. 最近150 ka河西地区河流阶地的成因分析[J]. 地理科学, 2006, 26(5) 603-608.
doi: 10.3969/j.issn.1000-0690.2006.05.015 |
Hu Chunsheng, Pan Baotian, Gao Hongshan et al. Analysis of origin river terraces in Hexi Area since 150 ka B. P[J]. Scientia Geographica Sinica, 2006, 26(5) 603-608.
doi: 10.3969/j.issn.1000-0690.2006.05.015 |
|
[3] | 高红山, 李宗盟, 刘小丰, 等. 三阳川盆地渭河阶地发育与河谷地貌演化[J]. 中国科学:地球科学, 2017, 60(2) 413-427. |
Gao Hongshan, Li Zongmeng, Liu Xiaofeng et al. Fluvial terraces and their implications for Weihe River valley evolution in the Sanyangchuan Basin. Science China Earth Sciences, 2017, 60(2) 413-427. | |
[4] | 邱维理. 中国地文期研究史[J]. 中国科技史料, 1999, 20(2) 95-106. |
Qiu Weili. The history of the researches on physiographic stages in China. The China Journal for the History of Science and Technology, 1999, 20(2) 95-106. | |
[5] | 孔凡翠, 杨瑞东, 韩晓彤. 贵州省第四纪河流阶地沉积分析[J]. 贵州地质, 2010, 27(2): 91-94+99. |
Kong Fancui, Yang Ruidong, Han Xiaotong. Analysis on the river terrace sediment in quaternary period of Guizhou Province. Guizhou Geology. 2010, 27(2): 91-94+99. | |
[6] |
杨景春, 谭利华, 李有利, 等. 祁连山北麓河流阶地与新构造演化[J]. 第四纪研究, 1998, 18(3) 229-237.
doi: 10.3321/j.issn:1001-7410.1998.03.006 |
[Yang Jingchun, Tan Lihua, Li Youli et al. River terraces and neotectonic evolution at north magin of the Qilianshan Mountains. Quaternary Sciences, 1998, 18(3) 229-237.
doi: 10.3321/j.issn:1001-7410.1998.03.006 |
|
[7] |
吕红华, 李有利, 南峰, 等. 天山北麓河流阶地序列及形成年代[J]. 地理学报, 2008, 63(1) 65-74.
doi: 10.3321/j.issn:0375-5444.2008.01.007 |
Lyu Honghua, Li Youli, Nan Feng et al. Sequences and ages of fluvial terraces along the northern piedmont of the Tianshan Mountains. Acta Geographica Sinica, 2008, 63(1) 65-74.
doi: 10.3321/j.issn:0375-5444.2008.01.007 |
|
[8] | Ruegg G H J. Alluvial architecture of the Quaternary Rhine-Meuse River system in the Netherlands[J]. Geologie en Mijnbouw 1993, 72: 321-330. |
[9] | Olszak J. Evolution of fluvial terrace in response to climate change and tectonic uplift during the Pleistocene: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians)[J]. Geomorphology. 2011, 129: 71-78. |
[10] | Erkens C, Dambeck R, Volleberg P K et al. Fluvial terrace formation in the northern Upper Rhine Graben during the last 20000 years as a result of allogenic controls and autogenic evolution[J]. Geomorphology. 2009. 103: 476-495. |
[11] |
Antoine P, Lautridou P J, Laurent M. Long-term fluvial archives in NW France: Response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes[J]. Geomorphology, 2000, 33: 183-207.
doi: 10.1016/S0169-555X(99)00122-1 |
[12] |
Hu Z, Pan B, Guo L et al. Rapid fluvial incision and headward erosion by the yellow river along the jinshaan gorge during the past 1. 2 ma as a result of tectonic extension[J]. Quaternary Science Reviews, 2016, 133: 1-14.
doi: 10.1016/j.quascirev.2015.12.003 |
[13] |
樊云龙, 刘建建, 朱克卫, 等. 喀斯特峡谷河流下切速率研究——以北盘江尼珠河大峡谷为例[J]. 第四纪研究, 2021, 41(6) 1558-1564.
doi: 10.11928/j.issn.1001-7410.2021.06.04 |
Fan Yunlong, Liu Jianjian, Zhu Kewei et al. Study on river downcutting rate in Karst Canyon—A case study of Nizhu River Grand Canyon in Beipan River. Quaternary Sciences, 2021, 41(6) 1558-1564.
doi: 10.11928/j.issn.1001-7410.2021.06.04 |
|
[14] | 代传固. 黔东及邻区地质构造特征及其演化[D]. 北京: 中国地质大学(北京), 2010. |
Dai Chuangu. Geologic Character and Tectvnie Ewlutivn of the East Guizhvu and its adjacent region. Beijing: China University of Geosciences (Beijing), 2010. | |
[15] | 高道德, 张世从, 毕坤, 等. 黔南岩溶研究[M]. 贵阳: 贵州人民出版社, 1986, 136-138. |
Gao Daode, Zhang Shicong, Bi Kun et al. Karst in South Guizhou, China. Guiyang: Guizhou People’s Publishing House, 1986, 136-138. | |
[16] | 任志森. 沅江中游河流阶地发育及其对气候—新构造运动的响应[D]. 北京: 中国地质大学, 2019. |
Ren Zhisen. Development of fluvial terraces in the middle reaches of the Yuanjiang River and its response to climate and Neotectonic Movement. Beijing: China University of Geosciences, 2019. | |
[17] | 柏道远, 李长安, 陈渡平, 等. 洞庭盆地两护村孔重矿物特征及其对第四纪构造活动与环境演变的响应[J]. 地质论评, 2010, 56(2) 246-260. |
Bai Daoyuan, Li Changan, Chen Duping et al. Heavy minerals characteristics of sediments in Lianghucun borehole and their responses to the Quaternary tectonic movement and environmental evolutions of the Dongting Basin. Geological Review, 2010, 56(2) 246-260. | |
[18] | 赵举兴, 李长安, 许应石. 洞庭盆地古沅江砾石层的沉积特征及沉积环境[J]. 地质科技情报, 2014, 33(1) 85-89. |
Zhao Juxing, Li Changan, Xu Yingshi. Sedimentary characteristics and sedimentary environment of the gravel bed within Paleo-Yuanjiang River from Dongting Basin. Geological Science and Technology Information, 2014, 33(1) 85-89. | |
[19] |
樊云龙, 潘保田, 胡振波, 等. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7) 751-761.
doi: 10.11867/j.issn.1001-8166.2018.07.0751 |
Fan Yunlong, Pan Baotian, Hu Zhenbo et al. An Analysis of Tectonic Geomorphologic Characteristics of the Beipanjiang Basin in the Yunnan-Guizhou Plateau. Advances in Earth Science, 2018, 33(7) 751-761.
doi: 10.11867/j.issn.1001-8166.2018.07.0751 |
|
[20] |
程捷, 刘学清, 高振纪, 等. 青藏高原隆升对云南高原环境的影响[J]. 现代地质, 2001(3) 290-296.
doi: 10.3969/j.issn.1000-8527.2001.03.008 |
Cheng Jie, Liu Xueqing, Gao Zhenji et al. Effect of the Tibetan plateau uplifting on geological environment of the Yunnan Plateau. Geoscience, 2001(3) 290-296.
doi: 10.3969/j.issn.1000-8527.2001.03.008 |
|
[21] |
Tapponnier P. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294(5547) 1671-1677.
doi: 10.1126/science.105978 |
[22] |
Clark M K, Royden L H, Whipple K X et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan plateau[J]. Journal of Geophysical Research:Earth Surface, 2006, 111: F03002
doi: 10.1029/2005JF000294 |
[23] | 崔敏, 汤良杰, 郭彤楼, 等. 黔东南地区褶皱构造样式及其断层突破模式[J]. 地球科学:中国地质大学学报, 2009(6) 907-913. |
Cui Min, Tang Liangjie, Guo Tonglou et al. Structural Style and Thrust Breakthrough Model of Fold in Southeast Guizhou. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2009(6) 907-913. | |
[24] | 李学刚, 杨坤光, 胡祥云, 等. 黔东凯里—三都断裂结构及形成演化[J]. 成都理工大学学报(自然科学版), 2012, 39(1) 19-26. |
Li Xuegang, Yang Kunguang, Hu Xiangyun et al. Formation and evolution of the Kaili-Sandu fault in East Guizhou, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1) 19-26. | |
[25] |
Li Fuqiang, Pan Baotian, Lai Zhongping et al. Identifying the degree of luminescence signal bleaching in fluvial sediments from the Inner Mongolian reaches of the Yellow River[J]. Geochronometria, 2018, 45(1) 82-96.
doi: 10.1515/geochr-2015-0087 |
[26] | Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2) 497-500. |
[27] |
Lai Z P, Zöller L, Fuchs M et al. Alpha efficiency determination for OSL of quartz extracted from Chinese loess[J]. Radiation Measurements, 2008, 43(2-6) 767-770.
doi: 10.1016/j.radmeas.2008.01.022 |
[28] |
Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41: 369-391.
doi: 10.1016/j.radmeas.2005.11.001 |
[29] |
潘保田, 邬光剑, 王义祥, 等. 祁连山东段沙沟河阶地的年代与成因[J]. 科学通报, 2000, 45(24) 2669-2675.
doi: 10.3321/j.issn:0023-074X.2000.24.019 |
Pan Baotian, Wu Guangjian, Wang Yixiang et al. The chronology and formation of terrace, in Shagouhe, eastern segment of Qilianshan. Chinese Science Bulletin, 2000, 45(24) 2669-2675.
doi: 10.3321/j.issn:0023-074X.2000.24.019 |
|
[30] | 张金玉, 刘静, 王伟, 等. 活动造山带地区河流阶地与下切速率及其时空分布样式[J]. 第四纪研究, 2018, 38(1): 204-219. |
Zhang Jinyu, Liu Jing, Wang Wei et al. Fluvial terraces and river incision rates in active orogen and their spatial and temporal pattern. Quaternary Sciences. 2018, 38(1): 204-219. | |
[31] | Pazzaglia F J. Landscape evolution models[J]. Developments in Quaternary Sciences, 2003, 1(3) 247-274. |
[32] |
Bridgland D, Westaway R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon[J]. Geomorphology, 2008, 98(3-4) 285-315.
doi: 10.1016/j.geomorph.2006.12.032 |
[33] |
Wegmann K W, Pazzaglia F J. Holocene strath terraces, climate change, and active tectonics: The Clearwater River basin, Olympic Peninsula, Washington State[J]. Geological Society of America Bulletin, 2002, 114(6) 731-744.
doi: 10.1130/0016-7606(2002)114<0731:HSTCCA>2.0.CO;2 |
[34] |
Personius, S F. Late Quaternary stream incision and uplift in the forearc of the Cascadia subduction zone, western Oregon[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B10) 20193-20210.
doi: 10.1029/95JB01684 |
[35] | Lavé J, Avouac J P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal[J]. Journal of Geophysical Research Solid Earth. 2001, 106: 26561-26591. |
[36] | 李明道, 袁先顺. 曼洞断层与牛角塘断层的主要特征及两者关系探讨[J]. 贵州地质, 1998, (3): 240-245. |
Li Mingdao, Yuan Xianshun. A structural analysis of development of the Mandong Strike-Slip Fault Superimposed on the Niujiaotang Fault in Southern Guizhou. Guizhou Geology. 1998, 15(3): 240-245. | |
[37] | 金少荣, 叶霖, 杨德智, 等. 贵州凯里−都匀地区铅锌矿化规律与找矿靶区[J]. 矿物学报, 2018, 38(6) 675-683. |
Jin Shaorong, Ye Lin, Yang Dezhi et al. A discussion on the Pb-Zn Mineralization Regularity and Ore Prospecting Targets in the Kaili-Duyun Area, Guizhou Province, China. Acta Mineralogica Sinica, 2018, 38(6) 675-683. |
[1] | 吴克华, 苏维词, 贾真真, 王慧澄, 叶仕安, 罗时琴. 基于GIS与地理探测器的旅游地空间分布格局及驱动力分析——以贵州为例[J]. 地理科学, 2022, 42(5): 841-850. |
[2] | 贺祥. 生态系统服务供给安全阈值视域下喀斯特地区生态安全演变[J]. 地理科学, 2021, 41(11): 2021-2030. |
[3] | 郑龙飞, 顾伟男, 龙奋杰, 张苏. 不同流视角下的贵州省空间网络结构及形成机制分析[J]. 地理科学, 2020, 40(6): 939-947. |
[4] | 李阳兵, 陈会, 罗光杰. 贵州不同规模等级坝子空间分布特征研究[J]. 地理科学, 2019, 39(11): 1830-1840. |
[5] | 唐玉芝, 邵全琴, 曹巍, 杨帆, 刘璐璐, 吴丹, 周书贵. 基于物质量评估的贵州南部地区生态系统服务及其县域差异比较[J]. 地理科学, 2018, 38(1): 122-134. |
[6] | 王永明, 王美霞, 吴殿廷, 赵林, 丁建军. 贵州省乡村贫困空间格局与形成机制分析[J]. 地理科学, 2017, 37(2): 217-227. |
[7] | 胡春生, 吴立, 杨立辉. 青弋江上游泾县段阶地砾石层砾组结构及其沉积环境研究[J]. 地理科学, 2016, 36(6): 951-958. |
[8] | 胡春生, 周迎秋. 河流对0.8 Ma B.P.环境突变事件的地貌响应研究[J]. 地理科学, 2014, 34(5): 614-620. |
[9] | 胡春生, 潘保田, 苏怀. 黄土高原0.8 Ma以来地面抬升的时空特征研究[J]. 地理科学, 2012, 32(9): 1131-1135. |
[10] | 胡春生, 潘保田, 苏怀, 李吉均. 兰州盆地黄河800kaB.P.阶地的发现及其古地磁年代[J]. 地理科学, 2009, 29(2): 278-282. |
[11] | 吕红华, 李有利, 南峰, 司苏沛. 天山北麓黄土发育特征及形成年代[J]. 地理科学, 2008, 28(3): 375-379. |
[12] | 李阳兵, 邵景安, 周国富, 龙健. 喀斯特山区石漠化成因的差异性定量研究——以贵州省盘县典型石漠化地区为例[J]. 地理科学, 2007, 27(6): 785-790. |
[13] | 胡小飞, 潘保田, 苏怀, 安春雷, 周天. 宛川河阶地的年代与下切机制[J]. 地理科学, 2007, 27(6): 808-813. |
[14] | 许刘兵, 周尚哲. 河流阶地形成过程及其驱动机制再研究[J]. 地理科学, 2007, 27(5): 672-677. |
[15] | 刘运明, 李有利, 吕红华, 李新坡. 从阶地砾石的统计特征看保德至克虎段河流演化[J]. 地理科学, 2007, 27(4): 567-572. |
|