
1470年以来长江流域降水重建及其特征分析
许文锋, 张乐满, 范依捷, 陈详乐, 段晨辉, 敦静怡, 刘正学, 兰波
地理科学 ›› 2024, Vol. 44 ›› Issue (11) : 2029-2038.
1470年以来长江流域降水重建及其特征分析
Precipitation reconstruction and its characteristics in the Yangtze River Basin since 1470
根据文献旱涝图集、树轮帕默尔干旱指数(PDSI)图集及GPCC降水数据集,本文重建中国长江流域1470—2000年的降水序列并探讨降水特征变化。长江流域现代器测降水通过旋转经验正交分解可分为5个降水区:长江源区(Ⅰ区)、川汉盆地区(Ⅱ区)、西南山地区(Ⅲ区)、鄂渝山地区(Ⅳ区)、东部平原区(Ⅴ区)。重建降水多元回归模型经检验评估效果较好(P<0.01),验证期(1951—2000年)内各区重建降水和实测降水具可比性(0.70<r<0.83,P<0.01),相对偏差介于±30%,重建无明显偏好。各区重建降水在1470—1540年、1660—1705年湿润事件偏多。西、北部的Ⅰ、Ⅱ区降水趋同变化(r=0.27,P<0.01),Ⅰ区、Ⅱ区降水分别在1935—1985年、1845—1950年出现更多洪涝事件。Ⅲ区降水在1620—1655年、1933—1945年、1986—1994年出现显著干旱。Ⅵ区和Ⅴ区降水显著正相关(r=0.47,P<0.01)。长江流域各区降水存在多个2~7 a的显著短周期。此外,Ⅰ区降水出现9 a、31~51 a的中长周期;Ⅱ区出现22 a、约36 a和256 a的中长周期;Ⅳ区存在约21 a周期;Ⅴ区存在256 a的长周期。
According to Drought and Flood Atlas (DFA) based on bibliography, tree-ring reconstructed Palmer drought severity index (PDSI) and GPCC precipitation dataset, 5 precipitation sequences in the Yangtze River Basin (YRB) of China have been reconstructed from 1470 to 2020, and the precipitation characteristics was discussed further. Spatially, the YRB can be divided into 5 precipitation sub-regions based on modern meteorological precipitation, namely: the source region of the Yangtze River (Region Ⅰ), the Sichuan-Han basin region (Region Ⅱ), the southwest mountainous region (Region Ⅲ), the Hubei-Chongqing mountainous region (Region Ⅳ) and the eastern plain region (Region Ⅴ). Significant negative correlations between DFA and the adjacent tree ring reconstructed PDSI in each sub-region have been detected (P<0.01), establishing the basis for the extraction of precipitation information. The R2 of reconstructed precipitation by multiple regression model ranged from 0.16 to 0.68 (P<0.01), and has been further evaluated by effective coefficient, relative deviation (RD), showing that the model was acceptable. The reconstructed precipitation was well comparable to the measured precipitation during the verification period (1951—2000) (0.70<r<0.83, P<0.01). The RD varied between ±30% without obvious bias. More wet events occurred during 1470—1540 and 1660—1705. The precipitation in Region Ⅰ and Ⅱ changed synchronously (r=0.27, P<0.01), with more flood events during 1935—1985 for Region Ⅰ and during 1845—1950 for Region Ⅱ, respectively. The precipitation in region Ⅲ was significant drought at the intervals of 1620—1655, 1933—1945 and 1986—1994. The precipitation in Region Ⅳ and Ⅴ highly correlated (r=0.47, P<0.01). Several short periodicities of precipitation (2-7 a) revealed by multi-taper method of periodicity analysis in the YRB have been obtained. In addition, there were additional periodicities for precipitation in each region, that is, 9 a, 31-51 a in Region Ⅰ; 22 a, 36 a and 256 a in Region Ⅱ; about 21 a in Region Ⅳ ; about 256 a in Region Ⅴ.
长江流域 / REOF分区 / 降水重建 / 降水周期分析 {{custom_keyword}} /
the Yangtze River Basin / REOF division / precipitation reconstruction / precipitation periodicity analysis {{custom_keyword}} /
表1 长江流域年均降水的经验正交函数(EOF)、旋转经验正交函数(REOF)前6个模态的特征根误差上下限和方差贡献率Table 1 Upper and lower limits of characteristic root error and variance contribution rate of the first 6 modes of EOF and REOF based on the average annual precipitation in the Yangtze River Basin |
模态 | 模态Ⅰ | 模态Ⅱ | 模态Ⅲ | 模态Ⅳ | 模态Ⅴ | 模态Ⅵ |
特征根λ误差上限 | ||||||
特征根λ误差下限 | ||||||
EOF方差贡献率 | 32.89 | 16.43 | 8.49 | 5.29 | 4.38 | 未计算 |
EOF累计方差贡献率 | 32.89 | 49.33 | 57.82 | 63.11 | 67.49 | 未计算 |
REOF方差贡献率 | 15.37 | 14.05 | 12.78 | 10.87 | 8.25 | 未计算 |
REOF累计方差贡献率 | 15.37 | 29.42 | 42.20 | 53.07 | 61.32 | 未计算 |
表2 1470—2000年长江流域旱涝等级与树轮帕尔默干旱指数(PDSI)的相关矩阵Table 2 Correlation matrix among drought and flood grade and tree ring PDSI in the Yangtze River Basin in 1470—2000年 |
玉树 | 广元 | 汉中 | 贵阳 | 毕节 | 重庆 | 昆明 | 邵县 | 安康 | 南阳 | 上海 | 苏州 | |
注:*、**分别表示通过0.05、0.01的显著性检测,样本数为531。 | ||||||||||||
PDSI-1 | −0.42** | −0.01 | −0.05 | −0.08 | −0.10* | −0.05 | 0.07 | −0.06 | −0.02 | −0.03 | −0.07 | −0.04 |
PDSI-2 | −0.60** | −0.03 | −0.09* | −0.07 | −0.08 | −0.03 | 0.06 | −0.09* | −0.07 | −0.06 | −0.05 | −0.03 |
PDSI-3 | −0.50** | −0.03 | −0.08 | 0.01 | 0.00 | 0.03 | 0.07 | −0.04 | −0.09* | −0.03 | −0.01 | −0.01 |
PDSI-8 | −0.34** | −0.01 | −0.02 | −0.12** | −0.10* | −0.06 | −0.03 | −0.05 | −0.01 | −0.04 | −0.09* | −0.08 |
PDSI-4 | −0.44** | −0.07 | −0.11* | 0.01 | −0.02 | 0.01 | 0.05 | −0.07 | −0.08 | −0.04 | 0.00 | −0.02 |
PDSI-5 | −0.30** | −0.09* | −0.12** | 0.07 | 0.03 | 0.06 | 0.02 | −0.09* | −0.10* | −0.05 | 0.08 | 0.05 |
PDSI-9 | −0.18** | −0.15** | −0.22** | 0.04 | 0.02 | 0.04 | −0.03 | −0.14** | −0.19** | −0.11** | 0.07 | 0.05 |
PDSI-10 | −0.36** | −0.12** | −0.15** | 0.07 | 0.03 | 0.07 | 0.04 | −0.09* | −0.11** | −0.05 | 0.06 | 0.02 |
PDSI-11 | −0.27** | −0.16** | −0.23** | 0.01 | 0.00 | 0.04 | −0.02 | −0.14** | −0.20** | −0.12** | 0.02 | 0.02 |
PDSI-13 | −0.03 | 0.01 | 0.07 | −0.05 | −0.04 | −0.04 | −0.10* | 0.00 | 0.09* | 0.03 | 0.06 | 0.03 |
PDSI-14 | −0.17** | −0.12** | −0.09* | −0.01 | −0.04 | −0.03 | −0.02 | −0.10* | −0.04 | −0.03 | 0.07 | 0.05 |
PDSI-15 | −0.02 | 0.02 | 0.04 | 0.00 | −0.04 | −0.06 | −0.08 | −0.02 | 0.06 | 0.03 | 0.07 | 0.06 |
PDSI-16 | 0.033 | 0.01 | 0.04 | 0.02 | −0.05 | −0.06 | −0.08 | −0.02 | 0.06 | 0.03 | 0.08 | 0.07 |
PDSI-6 | −0.10* | −0.16** | −0.23** | 0.04 | 0.03 | 0.03 | −0.05 | −0.14** | −0.19** | −0.13** | 0.04 | 0.04 |
PDSI-7 | −0.05 | −0.13** | −0.20** | 0.02 | −0.01 | −0.01 | −0.07 | −0.13** | −0.17** | −0.13** | −0.05 | 0.00 |
PDSI-12 | −0.06 | −0.029 | −0.01 | −0.05 | 0.02 | 0.03 | −0.03 | 0.02 | 0.02 | 0.02 | −0.11* | −0.13** |
表3 长江流域各降水分区的多元线性回归函数及其验证Table 3 Multiple linear regression functions of precipitation zones and its verification in the Yangtze River Basin |
地区 | 多元线性回归方程 | Sig. | R2 | F | CE | 乘积平均数 | t分布表95%临界值 |
注:X为旱涝等级,X玉树为玉树的旱涝等级Z-score序列,P为树轮帕尔默干旱严重指数PDSI;P12为PDSI-12的Z-score序列;pc1、pc2、pc3分别代表各区树轮或史料的第一、第二和第三主成分轴得分。 | |||||||
Ⅰ区 | y=−37.47×X玉树+29.06×Ppc1+560.388 | 0.01 | 0.47 | 6.29 | 0.48 | 3.86 | 1.74 |
Ⅱ区 | y=−44.09×Xpc1+30.33×Xpc2−13.26×Ppc1+867.48 | 0.04 | 0.16 | 3.00 | 0.52 | 4.20 | 1.68 |
Ⅲ区 | y=−57.84×Xpc1+9.44×Ppc1+ | 0.01 | 0.28 | 8.77 | 0.80 | 3.74 | 1.68 |
Ⅳ区 | y=−97.10×Xpc1+4.92×Xpc2+14.27×Xpc3+27.00×Ppc1+ | 0.00 | 0.68 | 23.20 | 0.48 | 2.94 | 1.68 |
Ⅴ区 | y=−88.37×Xpc1+14.80×Xpc2+4.35×P12+ | 0.03 | 0.35 | 6.17 | 0.12 | 1.61 | 1.68 |
图3 1901—2000年长江流域各分区重建降水与实测降水序列对比及相对偏差**表示通过0.01的显著性检测,Ⅰ区校准期为1934—1950年(n=17),验证期为1951—2000年(n=50),其余各区校准期均为1901—1950年(n=50),验证期均为1951—2000年(n=50) Fig. 3 Comparison between reconstructed precipitation and instrumental precipitation and relative deviation in precipitation regions of the Yangtze River Basin from 1901 to 2000 |
图4 1470—2000年长江流域各降水分区重建降水序列灰线为重建降水量,黑线为11 a滑动平均值,点线从上至下分别代表偏涝、涝、旱、偏旱的阈值,蓝、红色条带分别对应于湿润和干旱气候 Fig. 4 Precipitation reconstruction in precipitation region of the Yangtze River Basin from 1470 to 2000 |
表4 1470—2000年长江流域各降水分区重建降水序列相关系数 (n = 531)Table 4 Correlation coefficients among precipitation reconstruction in each zone of the Yangtze River Basin in 1470—2000 (n = 531) |
地区 | Ⅰ区 | Ⅱ区 | Ⅲ区 | Ⅳ区 | Ⅴ区 |
注:**表示通过0.01的显著性检测。 | |||||
Ⅰ区 | 1.00 | ||||
Ⅱ区 | 0.27** | 1.00 | |||
Ⅲ区 | 0.06 | 0.13** | 1.00 | ||
Ⅳ区 | 0.02 | 0.27** | 0.24** | 1.00 | |
Ⅴ区 | 0.01 | 0.02 | 0.17** | 0.47** | 1.00 |
图S2 长江源区(Ⅰ区)树轮PDSI指数与旱涝等级的比较图Fig. S2 Comparison of PDSI of tree rings and drought and flood grades in Region I of Yangtze River Basin |
图S3 川汉盆地区(Ⅱ区)树轮PDSI指数与旱涝等级的比较Fig. S3 Comparison of PDSI of tree rings and drought and flood grades in Region Ⅱ of Yangtze River Basin |
图S4 西南山地区(Ⅲ区)树轮PDSI指数与旱涝等级的比较Fig. S4 Comparison of PDSI of tree rings and drought and flood grades in Region Ⅲ of Yangtze River Basin |
图S5 鄂渝山地区(Ⅳ区)树轮PDSI指数与旱涝等级与旱涝等级的比较Fig. S5 Comparison of PDSI of tree rings and drought and flood grades in Region Ⅳ of Yangtze River Basin |
[1] |
Stott P. How climate change affects extreme weather events[J]. Science, 2016, 352(6293): 1517-1518.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
Alizadeh-Choobari O, Najafi M S. Extreme weather events in Iran under a changing climate[J]. Climate Dynamics, 2018, 50(1): 249-260.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
Chen Y , Li B, Li Z et al. Water resource formation and conversion and water security in arid region of Northwest China[J]. Journal of Geographical Sciences, 2016, 26(7): 939-952.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Li X, Zhang K, Gu P et al. Changes in precipitation extremes in the Yangtze River Basin during 1960—2019 and the association with global warming, ENSO, and local effects[J]. Science of the Total Environment, 2020, 760(3): 144-244.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
陈国阶. 长江流域自然灾害若干问题探讨[J]. 长江流域资源与环境, 1993, 2(1): 50-57
Cheng Guojie. Approaches on natural calamities of the Yangtze River valley. Resources and Environment in the Yangtze Basin, 1993, 2(1): 50-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
刘艳丽, 华悦, 周惠成, 等. 1470年以来中国东部季风区降水变化规律及趋势预估[J]. 水科学进展, 2022, 33(1): 1-14
Liu Yanli, Hua Yue, Zhou Huicheng et al. Precipitation variation and trend projection in the eastern monsoon region of China since 1470. Advances in Water Science, 2022, 33(1): 1-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Karanitsch-Ackerl S, Mayer K, Gauster T et al. A 400-year reconstruction of spring–summer precipitation and summer low flow from regional tree-ring chronologies in North-Eastern Austria[J]. Journal of Hydrology, 2019, 577: 123986
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
Demina A V, Belokopytova L V, Zhirnova D F et al. Degree of connectivity in reconstructed precipitation dynamics and extremes for semiarid regions across South Siberia[J]. Dendrochronologia, 2022, 71: 125903
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
Zheng J, Yu Y, Zhang X et al. Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years[J]. Climate of the Past, 2018, 14(8): 1135-1145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
万智巍, 蒋梅鑫, 洪祎君, 等. 1470—2014年鄱阳湖流域降水量重建与旱涝灾害诊断[J]. 灾害学, 2018, 33(4): 93-98.
Wan Zhiwei, Jiang Meixin, Hong Yijun et al. Series reconstruction on drought and flood hazard in the Poyang Lake Basin during 1470—2014. Journal of Catastrophology, 2018, 33(4): 93-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
王亚军, 李明启. 中国利用树轮资料重建干湿变化研究进展[J]. 地理科学进展, 2016, 35(11): 1397-1410.
Wang Yajun, Li Mingqi. Research progress of dry-wet climate reconstruction by tree ring in China. Progress in Geography, 2016, 35(11): 1397-1410.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
Cook E R, Anchukaitis K J, Buckley B M et al. Asian monsoon failure and megadrought during the last millennium[J]. Science, 2010, 328(5977): 486-489.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
肖丁木, 秦宁生, 黄小梅, 等. 树轮记录的长江源区近412年以来3—5月降水量变化[J]. 冰川冻土, 2016, 38(6): 1691-1700
Xiao Dingmu, Qin Ningsheng, Huang Xiaomei et al. A 412-year March-May precipitation series reconstructed from tree-ring records in the source regions of the Yangtze River. Journal of Glaciology and Geocryology, 2016, 38(6): 1691-1700.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
Gou X H, Yang T, Gao L L et al. A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau, China using tree-ring records[J]. Chinese Science Bulletin, 2013, 58(10): 1107-1114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
Shi J, Lu H, Li J et al. Tree-ring based February–April precipitation reconstruction for the lower reaches of the Yangtze River, Southeastern China[J]. Global and Planetary Change, 2015, 131: 82-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
李雪, 黄选瑞, 张先亮. 等. 不同去趋势方法对树轮气候信号识别的影响[J]. 生态学报, 2021, 41(5): 1970-1978
Li Xue, Huang Xuanrui, Zhang Xianliang et al. Influences of different detrending methods on identifying the climate signals from tree-ring analysis. Acta Ecologica Sinica, 2021, 41(5): 1970-1978.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
现代中央气象局科学研究院. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社, 1981
Chinese Academy of Meteorological Sciences, China Meteorological Administration. Yearly charts of dryness/wetness in China for the last 500 year period. Beijing: Sinomaps Press, 1981.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
张德二, 刘传志. 《中国近五百年旱涝分布图集》续补(1980—1992年)[J]. 气象, 1993, 19(11): 41-45.
Zhang De’er, Liu Chuanzhi. Complementary data of the yearly charts of dryness/wetness in China for the last 500 years period (1980—1992). Meteorological Monthly, 1993, 19(11): 41-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
张德二, 李小泉, 梁有叶. 《中国近五百年旱涝分布图集》的再续补(1993—2000年)[J]. 应用气象学报, 2003, 14(3): 379-388
Zhang De’er, Li Xiaoquan, Liang Youye. Complementary data of the yearly charts of dryness/wetness in China for the last 500 years period (1993—2000). Quarterly Journal of Applied Meteorology, 2003, 14(3): 379-388.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
陈海龙. 长江流域近千年旱涝规律研究[J]. 地理科学, 1987, 7(3): 197-206
Chen Hailong. A study on regularity of drought and flood in the Changjiang River Basin during last 10 centuries. Scientia Geographica Sinica, 1987, 7(3): 197-206.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
张强, 姜彤, 吴宜进. ENSO事件对长江上游1470—2003年旱涝灾害影响分析[J]. 冰川冻土, 2004, 26(6): 691-696
Zhang Qiang, Jiang Tong, Wu Yijin. Impact of ENSO events on flood/drough disasters of upper Yangtze River during 1470—2003. Journal of Glaciology and Geocryology, 2004, 26(6): 691-696.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
薛积彬, 钟巍. 1470年以来广东地区降水量的定量重建及其探讨[J]. 华南师范大学学报(自然科学版), 2006(1): 125-133
Xue Jibin, Zhong Wei. Precipitation reconstruction and analysis in Guangdong Province since 1470. Journal of South China Normal University (Natural Science Edition), 2006(1): 125-133.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
王涛, 郭媛, 罗艳, 等. 1800年以来海河流域夏季降水量的定量重建及分析[J]. 南京信息工程大学学报(自然科学版), 2016, 8(2): 138-45
Wang Tao, Guo Yuan, Luo Yan et al. Precipitation reconstruction and analysis in Haihe River Basin since 1800. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2016, 8(2): 138-45
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Yi L, Yu H, Ge J et al. Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records[J]. Climatic Change, 2012, 110(1): 469-498.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Shi H, Wang B, Cook E R et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 31(19): 7845-7861.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
邓翠玲, 佘敦先, 张利平, 等. 基于图像三维连通性识别方法的长江流域干旱事件特征[J]. 农业工程学报, 2021, 37(11): 131-139
Deng Cuiling, She Dunxian, Zhang Liping et al. Characteristics of drought events using three-dimensional graph connectedness recognition method in the Yangtze River Basin, China. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 131-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
周建琴, 庞占龙, 蔡强国, 等. 长江流域不同类型山洪灾害易发区划分[J]. 北京林业大学学报, 2017, 39(11): 56-64
Zhou Jianqin, Pang Zhanlong, Cai Qiangguo et al. Susceptibility zoning of different types of mountain torrent disasters in the Yangtze River Basin of Sourthern China. Journal of Beijing Forestry University, 2017, 39(11): 56-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
邢大韦. 我国大江大河的洪涝灾害及其治理对策[J]. 灾害学, 1990(3): 90-96
Xing Dawei. Floods of big rivers in China and its harness countermeasures. Journal of Catastrophology, 1990(3): 90-96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
白虎志. 中国西北地区近500年旱涝分布图集: 1470—2008[M]. 北京: 气象出版社, 2010
Bai Huzhi. Yearly charts of dryness/wetness in Northwest China in the last 500 years (1470—2008). Beijing: China Meteorological Press, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
Schneider U, Becker A, Finger P et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology, 2014, 115(1-2): 15-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
王丹, 王爱慧. 1901—2013年GPCC和CRU降水资料在中国大陆的适用性评估[J]. 气候与环境研究, 2017, 22(4): 446-462
Wang Dan, Wang Aihui. Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013. Climatic and Environmental Research, 22(4): 446−462.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
姜贵祥, 孙旭光. 格点降水资料在中国东部夏季降水变率研究中的适用性[J]. 气象科学, 2016, 36 (4): 448-456
Jiang Guixiang, Sun Xuguang. Application of grid precipitation datasets in summer precipitation variability over East China. Journal of the Meteorological Sciences, 2016, 36(4): 448-456.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
刘丹丹, 梁丰, 王婉昭, 等. 基于GPCC数据的1901—2010年东北地区降水时空变化[J]. 水土保持研究, 2017, 24(2): 124-131.
Liu Dandan, Liang Feng, Wang Wanzhao et al. Spatial and temporal variations of precipitation in Northeast China from 1901 to 2010 based on GPCC Data. Research of Soil and Water Conservation, 2017, 24(2): 124-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
Wang H, Shao X, Li M. A 2917-year tree-ring-based reconstruction of precipitation for the Buerhanbuda Mts. Southeastern Qaidam Basin, China[J]. Dendrochronologia, 2019, 55: 80-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
Yu H, Wang L, Yang M. Effects of elevation and longitude on precipitation and drought on the Yunnan-Guizhou Plateau, China[J]. Pure and Applied Geophysics, 2023, 180: 2461-2481.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
Sun J W, Bi S B, Bashir B et al. Historical trends and characteristics of meteorological drought based on standardized precipitation index and standardized precipitation evapotranspiration index over the past 70 years in China (1951—2020)[J]. Sustainability, 2023, 15(14): 10875
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
刘晓琼, 孙曦亮, 刘彦随, 等. 基于REOF-EEMD的西南地区气候变化区域分异特征[J]. 地理研究, 2020, 39(5): 1215-1232.
Liu Xiaoqiong, Sun Xiliang, Liu Yansui et al. Spatial division of climate change and its evolution characteristics in Southwest China based on REOF-EEMD. Geographical Research, 2020, 39(5): 1215-1232.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
王怀军, 曹蕾, 俞嘉悦, 等. 基于EOF分析和GAMLSS模型的淮河流域极端气候事件非平稳特征[J]. 灌溉排水学报, 2021, 40(5): 125-134
Wang Huaijun, Cao Lei, Yu Jiayue et al. Using EOF and GAMLSS to analyze nonstationary extreme climate events in Huai River Basin. Journal of Irrigation and Drainage, 2021, 40(5): 125-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
王涛. 近400年我国北方地区降水重建与多尺度变化规律研究[D]. 南京: 南京信息工程大学, 2015
Wang Tao. Precipitation reconstruction and multi-scale variations of northern China over the past 400 years. Nanjing: Nanjing University of Information Science and Technology, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
Mann M E, Lees J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
补充材料
附件 (902 KB)
/
〈 |
|
〉 |